source: branches/0.3/win/PostNAS-0.3/data/coordinate_operation_method.csv @ 16

Revision 16, 192.1 KB checked in by gfikoczek, 15 years ago (diff)

Version 0.3 hinzugefügt

Line 
1coord_op_method_code,coord_op_method_name,reverse_op,formula,example,remarks,information_source,data_source,revision_date,change_id,deprecated
29601,Longitude rotation,1,Target_longitude = Source_longitude + longitude_offset.,(none),This transformation allows calculation of the longitude of a point in the target system by adding the parameter value to the longitude value of the point in the source system.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,1999-11-12,99.79,0
39602,Geographic/geocentric conversions,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
4
5Latitude, P, and Longitude, L, in terms of Geographic Coordinate Reference System A may
6be expressed in terms of a geocentric (earth centred) Cartesian coordinate reference system X, Y, Z
7with the Z axis corresponding with the Polar axis positive northwards, the X axis through
8the intersection of the Greenwich meridian and equator, and the Y axis through the
9intersection of the equator with longitude 90 degrees E. If the prime meridian for geogCRS A is not
10Greewich, longitudes must first be transformed to their Greenwich equivalent. If the earth's
11spheroidal semi major axis is a, semi minor axis  b, and inverse flattening 1/f,  then
12
13   XA=   (nu + hA) cos P cos L
14   YA=   (nu + hA) cos P sin L
15   ZA=  ((1 - e^2) nu + hA) sin P
16
17where nu is the prime vertical radius of curvature at latitude P and is equal to
18   nu = a /(1 - e^2*sin^2(P))^0.5,
19   P and L are respectively the latitude and longitude (related to Greenwich) of the point
20   h is height above the ellipsoid, (topographic height plus geoidal height), and
21   e is the eccentricity of the ellipsoid where e^2 = (a^2 -b^2)/a^2 = 2f -f^2
22                                                                                                                                                 
23Cartesian coordinates in geocentric coordinate reference system B may be used to derive geographical coordinates in terms of geographic coordinate reference system B by:
24   P   =  arctan (ZB + e^2* nu*sin P) / (XB^2 + YB^2)^0.5 by iteration
25   L   = arctan YB/XB
26   hB  =  XB sec L sec P  - nu
27
28where LB is relative to Greenwich. If the geographic system has a non Greenwich prime
29meridian, the Greenwich value of the local prime meridian should be applied to longitude.
30
31(Note that h is the height above the ellipsoid. This is the height value which is
32delivered by Transit and GPS satellite observations but is not the topographic
33height value which is normally used for national mapping and levelling operations.
34The topographic height is usually the height above mean sea level or an alternative
35level reference for the country. If one starts with a topographic height,  it will be
36necessary to convert it to an ellipsoid height before using the above transformation
37formulas. h = N + H, where N is the geoid height above the ellipsoid at the point
38and is sometimes negative, and H is the height of the point above the geoid. The
39height above the geoid is often taken to be that above mean sea level, perhaps with
40a constant correction applied. Geoid heights of points above the nationally used
41ellipsoid may not be readily available. For the WGS84 ellipsoid the value of N,
42representing the height of the geoid relative to the ellipsoid, can vary between
43values of -100m in the Sri Lanka area to +60m in the North Atlantic.)","Consider a North Sea point with coordinates derived by GPS satellite in the WGS 84 geographical coordinate system with coordinates of:
44
45           latitude    53 deg 48 min 33.82 sec N,
46           longitude 02 deg 07 min 46.38 sec E,
47    and ellipsoidal height 73.0m,
48
49whose coordinates are required in terms of the ED50 geographical coordinate system which takes the International 1924 ellipsoid. The three parameter datum shift from WGS 84 to ED50 for this North Sea area is given as dX = +84.87m, dY = +96.49m, dZ = +116.95m.
50
51The WGS 84 geographical coordinates convert to the following geocentric values using the above formulas for X, Y, Z:
52
53   XA = 3771 793.97m
54   YA =   140 253.34m
55   ZA = 5124 304.35m
56
57Applying the quoted datum shifts to these, we obtain new geocentric values now related to ED50:
58
59   XB = 3771 878.84m
60   YB =   140 349.83m
61   ZB = 5124 421.30m
62
63These convert to ED50 values on the International 1924 ellipsoid as:
64           latitude    53 deg 48 min 36.565 sec N,
65           longitude 02 deg 07 min 51.477 sec E,
66    and ellipsoidal height 28.02 m,
67
68Note that the derived height is referred to the International 1924 ellipsoidal surface and will need a further correction for the height of the geoid at this point in order to relate it to Mean Sea Level.","This is a parameter-less conversion. In applications it is often concatenated with the 3- 7- or 10-parameter transformations 9603, 9606, 9607 or 9636 to form a geographic to geographic transformation.","EPSG guidance note #7-2, http://www.epsg.org, from ""Transformation from spatial to geographical coordinates""; B. R. Bowring; Survey Review number 181; July 1976.",EPSG,2004-04-27,97.29  2002.51 2004.33,0
699603,Geocentric translations,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
70
71Xt = Xs + dX;  Yt = Ys + dY;  Zt = Zs + dZ","Given a three parameter datum shift from WGS 84 to ED50 for this North Sea area is given as
72dX = +84.87m, dY = +96.49m, dZ = +116.95m.
73
74The WGS84 geographical coordinates convert to the following WGS 84 geocentric values using
75the above formulas for X, Y, Z:
76
77   XA = 3771 793.97m
78   YA =   140 253.34m
79   ZA = 5124 304.35m
80
81Applying the given datum shifts to these, we obtain new geocentric values now related
82to ED50:
83
84   XB = 3771 878.84m
85   YB =   140 349.83m
86   ZB = 5124 421.30m",This transformation allows calculation of coordinates in the target system by adding the parameter value to the corresponding coordinate values of the point in the source system.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,1996-09-18,,0
879604,Molodensky,1,See information source.,(none),See Abridged Molodensky.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-08-25,2004.47,0
889605,Abridged Molodensky,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
89
90As an alternative to the computation of the new latitude, longitude and height above ellipsoid in discrete steps through geocentric coordinates, the changes in these geographic coordinates may be derived directly by formulas derived by Molodenski. Abridged versions of these formulas, which are quite satisfactory for three parameter transformations, are as follows:
91
92dlat "" = [(-dX*sin(lat)*cos(lon)) - (dY*sin(lat)*sin(lon)) + (dZ*cos(lat)) + (((a*Df) + (f*Da))*sin(2*lat))] / (rho * sin(1""))
93
94dlon "" = (-dX*sin(lon) + dY*cos(lon)) / ((nu*cos(lat)) * sin(1""))
95
96dh = (dX*cos(lat)*cos(lon)) + (dY*cos(lat)*sin(lon)) + (dZ*sin(lat)) + ((a*Df + f*Da)*(sin(lat)^2)) - da
97
98where the dX, dY and dZ terms are the geocentric translation parameters, and rho and nu are the meridian and prime vertical radii of curvature at the given latitude (lat) on the first ellipsoid, da is the difference in the semi-major axes (a1 - a2) of the first and second ellipsoids and df  is the difference in the flattening of the two ellipsoids.
99
100The formulas for dlat and dlon indicate changes in latitude and longitude in arc-seconds.","For a North Sea point with coordinates derived by GPS satellite in the WGS84 geographical coordinate reference system, with coordinates of:
101           latitude lat_s                =53°48'33.82""N,
102           longitude lon_s             = 2°07'46.38""E,
103    and ellipsoidal height h_s = 73.0m,
104
105whose coordinates are required in terms of the ED50 geographical coordinate reference system which takes the International 1924 ellipsoid.
106
107The three geocentric translations parameter values from WGS84 to ED50 for this North Sea area are given as dX = +84.87m, dY = +96.49m, dZ = +116.95m.
108Ellipsoid Parameters are:
109WGS 84               a = 6378137.0 metres    1/f = 298.2572236
110International 1924  a = 6378388.0 metres    1/f = 297.0
111
112Then
113da = 6378388 – 6378137 = 251
114df = 0.003367003 - 0.003352811  = 1.41927E-05
115whence
116dlat  = 2.543""
117dlon  = 5.097""
118dh   =  – 44.909 m
119
120ED50 values on the International 1924 ellipsoid are then:
121           latitude lat_t                 = 53°48'36.563""N,
122           longitude  lon_t             =  2°07'51.477""E,
123    and ellipsoidal height h_t  = 28.091 m.","This transformation is a truncated Taylor series expansion of a transformation between two geographic coordinate systems, modelled as a set of geocentric translations.","EPSG guidance note #7-2, http://www.epsg.org",EPSG,2006-06-12,99.01 2004.47 2006.42,0
1249606,Position Vector 7-param. transformation,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
125
126Transformation of coordinates from one geographic coordinate reference system into another (also known as a ""datum transformation"") is usually carried out as an implicit concatenation of three transformations:
127[geographical to geocentric >> geocentric to geocentric >> geocentric to geographic]
128
129The middle part of the concatenated transformation, from geocentric to geocentric, is usually described as a simplified 7-parameter Helmert transformation, expressed in matrix form with 7 parameters, in what is known as the ""Bursa-Wolf"" formula:
130
131   (Xt)             (  1       -Rz    +Ry)      (Xs)     (dX)
132   (Yt)  =  M *  ( +Rz      1      -Rx)  *  (Ys)  + (dY)
133   (Zt)              ( -Ry   +Rx       1 )      (Zs)      (dZ)
134
135The parameters are commonly referred to defining the transformation ""from source coordinate reference system to target coordinate reference system"", whereby (Xs, Ys, Zs) are the coordinates of the point in the source geocentric coordinate reference system and (Xt, Yt, Zt) are the coordinates of the point in the target geocentric coordinate reference system.  But that does not define the parameters uniquely; neither is the definition of the parameters implied in the formula, as is often believed.  However, the following definition, which is consistent with the “Position Vector Transformation” convention is common E&P survey practice,
136
137(dX, dY, dZ)   :Translation vector, to be added to the point's position vector in the source coordinate reference system in order to transform from source system to target system; also: the coordinates of the origin of the source coordinate reference system in the target coordinate reference system.
138
139(Rx, Ry, Rz)   :Rotations to be applied to the point's vector.  The sign convention is such that a positive rotation about an axis is defined as a clockwise rotation of the position vector when viewed from the origin of the Cartesian coordinate reference system in the positive direction of that axis; e.g. a positive rotation about the Z-axis only from source system to target system will result in a larger longitude value for the point in the target system.  Although rotation angles may be quoted in any angular unit of measure, the formula as given here requires the angles to be provided in radians.
140
141M                  :The scale correction to be made to the position vector in the source coordinate reference system in order to obtain the correct scale in the target coordinate reference system. M = (1 + dS*10^-6), where dS is the scale correction expressed in parts per million.
142
143<<<<<This text continues in the description of the Coordinate Frame Rotation formula>>>>>","Input point:
144Coordinate reference system: WGS 72 (geographic 3D)
145  Latitude =   55 deg 00 min 00 sec N
146  Longitude =  4 deg 00 min 00 sec E
147  Ellipsoidal height =  0 m
148
149This transforms to Cartesian geocentric coords:
150    X = 3 657 660.66 (m) 
151    Y =    255 768.55 (m)
152    Z = 5 201 382.11 (m)
153
154Transformation parameters WGS 72 to WGS 84:
155   dX (m) = 0.000
156   dY (m) = 0.000
157   dZ (m) = +4.5
158   RX ("") = 0.000 = 0.0 radians
159   RY ("") = 0.000 = 0.0 radians
160   RZ ("") = +0.554 = 0.000002685868 radians
161   Scale (ppm) = +0.219
162
163Application of the 7 parameter Position Vector Transformation results in WGS 84 coordinates of:
164   X = 3 657 660.78 (m)
165   Y =    255 778.43 (m)
166   Z = 5 201 387.75 (m)
167
168This converts into:
169   Latitude =   55 deg 00 min 00.090 sec N
170   Longitude =  4 deg 00 min 00.554 sec E
171   Ellipsoidal height =  +3.22 m
172on the WGS 84 geographic 3D coordinate reference system.",Note the analogy with the Coordinate Frame Rotation (code 9607) but beware of the differences!  The Position Vector convention is used by IAG and recommended by ISO 19111.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,1996-09-18,98.16,0
1739607,Coordinate Frame rotation,1,"<<<<<This text is continued from the description of the Position Vector Transformation formula>>>>>
174
175Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
176
177Although being common practice particularly in the European E&P industry, the Position Vector Transformation sign convention is not universally accepted.  A variation on this formula is also used, particularly in the USA E&P industry.  That formula is based on the same definition of translation and scale parameters, but a different definition of the rotation parameters.  The associated convention is known as the ""Coordinate Frame Rotation"" convention (EPSG coordinate operation method code 9607).
178The formula is:
179
180   (X’)             (  1      +Rz      -Ry)     (X)      (dX)
181   (Y’)  =  M *  ( -Rz       1      +Rx)  * (Y)  +  (dY)
182   (Z’)              ( +Ry   -Rx        1 )     (Z)       (dZ)
183
184and the parameters are defined as:
185
186(dX, dY, dZ)   : Translation vector, to be added to the point's position vector in the source coordinate reference system in order to transform from source coordinate reference system to target coordinate reference system; also: the coordinates of the origin of source coordinate reference system in the target frame.
187
188(Rx, Ry, Rz)   : Rotations to be applied to the coordinate reference frame.  The sign convention is such that a positive rotation of the frame about an axis is defined as a clockwise rotation of the coordinate reference frame when viewed from the origin of the Cartesian coordinate reference system in the positive direction of that axis, that is a positive rotation about the Z-axis only from source coordinate reference system to target coordinate reference system will result in a smaller longitude value for the point in the target coordinate reference system. Although rotation angles may be quoted in any angular unit of measure, the formula as given here requires the angles to be provided in radians.
189
190M                  : The scale factor to be applied to the position vector in the source coordinate reference system  in order to obtain the correct scale of the target coordinate reference system. M = (1+dS*10^-6), where dS is the scale correction expressed in parts per million.
191
192In the absence of rotations the two formulas are identical; the difference is solely in the rotations. The name of the second method reflects this.
193
194Note that the same rotation that is defined as positive in the first method is consequently negative in the second and vice versa.  It is therefore crucial that the convention underlying the definition of the rotation parameters is clearly understood and is communicated when exchanging datum transformation parameters, so that the parameters may be associated with the correct coordinate transformation method (algorithm).","The same example as for the Position Vector Transformation (coordinate operation method 9606) can be calculated, however the following transformation parameters have to be applied to achieve the same input and output in terms of coordinate values:
195
196Transformation parameters Coordinate Frame Rotation convention:
197dX (m) = 0.000
198dY (m) = 0.000
199dZ (m) = +4.5
200RX ("") = 0.000
201RY ("") = 0.000
202RZ ("") = -0.554 = -0.000002685868 radians
203Scale (ppm) = +0.219
204
205Please note that only the rotation has changed sign as compared to the Position Vector Transformation.",Note the analogy with the Position Vector transformation (code 9606) but beware of the differences!  The Position Vector convention is used by IAG and recommended by ISO 19111.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-03-17,2004.141,0
2069613,NADCON,1,See information source.,(none),Geodetic transformation operating on geographic coordinate differences by bi-linear interpolation.  Input expects longitudes to be positive west.,US Coast and geodetic Survey - http://www.ngs.noaa.gov,EPSG,2004-04-27,2004.19,0
2079614,NTv1,1,See information source.,(none),Geodetic transformation operating on geographic coordinate differences by bi-linear interpolation.  Superseded in 1997 by NTv2 (transformation method code 9615).   Input expects longitudes to be positive west.,Geomatics Canada - Geodetic Survey Division.,EPSG,2004-04-27,2004.19,0
2089615,NTv2,1,See information source.,(none),Geodetic transformation operating on geographic coordinate differences by bi-linear interpolation.  Supersedes  NTv1 (transformation method code 9614).  Input expects longitudes to be positive west.,http://www.geod.nrcan.gc.ca/products/html-public/GSDapps/English/NTv2_Fact_Sheet.html,EPSG,2004-04-27,2004.19,0
2099616,Vertical Offset,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
210
211Xt = [(Xs * Us) + (A * Ua)] * (m / Ut)
212
213where
214Xt = value in the target vertical coordinate reference system.
215
216Xs = value in the source vertical coordinate reference system;
217
218A is the value of the origin of the target system in the source system.
219
220m is unit direction multiplier (m=1 if both systems are height or both are depth; m = –1 if one system is height and the other system is depth; the value of m is implied through the vertical coordinate reference system type attribute).
221
222Us Ut and Ua are unit conversion ratios to metres for the source and target systems and the offset value A respectively.",(none),This transformation allows calculation of height (or depth) in the target system by adding the parameter value to the height (or depth)-value of the point in the source system.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,1999-11-12,99.79,0
2239617,Madrid to ED50 polynomial,0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
224
225The polynomial expressions are:
226
227      dLat seconds = A0 + (A1*lat) + (A2*lon) + (A3*H)
228      dLon seconds = B00 + B0 + (B1*lat) + (B2*lon) + (B3*H)
229
230where latitude lat and longitude lon are in decimal degrees referred to the Madrid 1870 (Madrid) geographic coordinate reference system and H is gravity-related height in metres.  B00 is the longitude (in seconds) of the Madrid meridian measured from the Greenwich meridian; it is the value to be applied to a longitude relative to the Madrid meridian to transform it to a longitude relative to the Greenwich meridan.
231
232The results of these expressions are applied through the formulae:
233Lat(ED50) = Lat(M1870(M))  + dLat
234and Lon(ED50) = Lon(M1870(M))  + dLon.","Input point coordinate system: Madrid 1870 (Madrid) (geographic 3D)
235   Latitude    =  42 deg 38 min 52.77 sec N
236                    = 42.647992 degrees
237   Longitude  =    3 deg 39 min 34.57 sec E of Madrid
238                     = +3.659603 degrees from the Madrid meridian.
239   Height        =  0 m
240
241For the north zone transformation:
242A1 = 11.328779
243A2 = -0.1674
244A3 = -0.03852
245A4 = 0.0000379
246B0 = -13276.58
247B1 = 2.5079425
248B2 = 0.8352
249B3 = -0.00864
250B4 = -0.0000038
251
252dLat = +4.05 seconds
253
254Then ED50 latitude = 42 deg 38 min 52.77 sec N + 4.05sec
255                               = 42 deg 38 min 56.82 sec N
256
257
258dLon = -13238.484 seconds  = -3 deg 40 min 38.484 sec
259
260Then ED50 longitude = 3 deg 39 min 34.57 sec E - 3 deg 40 min 38.484 sec
261                                  = 0 deg 01 min 03.914 sec W of Greenwich.",,"EPSG guidance note #7-2, http://www.epsg.org, after Institut de Geomatica; Barcelona.",EPSG,2006-10-30,99.284 99.82 99.64 2006.91,0
2629618,Geographic2D with Height Offsets,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
263
264Lat_T = Lat_S + latitude_offset
265Lon_T = Lon_S + longitude_offset
266EllipsoidHeight_T = GravityHeight_S + gravity-related_to_ellipsoid_height_offset.",(none),This transformation allows calculation of coordinates in the target system by adding the parameter value to the coordinate values of the point in the source system.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-27,99.79 2004.33,0
2679619,Geographic2D offsets,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
268
269Lat_T = Lat_S + latitude_offset
270Lon_T = Lon_S + longitude_offset.","A position with coordinates of 38°08'36.565""N, 23°48'16.235""E referenced to the old Greek geographic 2D coordinate reference system (EPSG CRS code 4120) is to be transformed to the newer GGRS87 system (EPSG CRS code 4121). Transformation parameters from Greek to GGRS87 are:
271dLat    =       -5.86""
272dLon    =       +0.28""
273
274Then Lat(GGRS87)         =      38°08'3656 5"" N               (5.8 6"")        =      38°08'30.705""N
275and Lon(GGRS87)         =       23°48'16.23  5""E      +       0. 28""  =      23°48'16.515""E
276
277For the reverse transformation for the same point,
278Lat(GREEK)       =      38°08'30.705  "" N     +       5. 86""          =      38°08'36.565""N
279Lon(GREEK)       =      23°48'16.515"" E        +      (-0. 28 "")      =      23°48'16.235""E",This transformation allows calculation of coordinates in the target system by adding the parameter value to the coordinate values of the point in the source system.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-27,99.79 2004.33,0
2809620,Norway Offshore Interpolation,0,See information source.,(none),"Although in principle this method is not reversible, in practice reversibility is better than 10 cm. For the applications for which it was designed it may be considered reversible.","Norwegian Mapping Authority note of 13-Feb-1991 ""Om Transformasjon mellom Geodetiske Datum i Norge"".",EPSG,2005-05-21,2005.23,0
2819621,Similarity transformation,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
282
283The similarity transformation in algebraic form is:
284
285XT = XT0  + XS * M * cos q  + YS * M * sin q
286YT = YT0  – XS * M * sin q  + YS * M * cos q
287
288where:
289XT0 , YT0    =   the coordinates of the origin point of the source coordinate reference system expressed in the target coordinate reference system;
290M                 =  the length of one unit in the source coordinate reference system expressed in units of the target coordinate reference system;
291q                  = the angle about which the axes of the source coordinate reference system need to be rotated to coincide with the axes of the target coordinate reference system, counter-clockwise being positive. Alternatively, the bearing of the source coordinate reference system Y-axis measured relative to target coordinate reference system north.
292
293The similarity transformation can also be described as a special case of the parametric affine transformation where coefficients A1 = B2  and  A2 =  - B1.
294
295Reversibility
296The reverse formula for the Similarity Transformation is:
297
298XS = [(XT  – XTO) * cos q   Â–  (YT – YTO) * sin q ] / [M ]
299YS = [(XT   Â– XTO) * sin q   +  (YT – YTO) * cos q] / [M ]","Tombak LNG Plant Grid to Nakhl-e Ghanem / UTM zone 39N
300
301Parameters of the Similarity Transformation:
302XTO     =         611267.2865 metres
303YTO     = =     3046565.8255 metres
304M       = 0.9997728332
305q       = 315 degrees
306
307Forward computation for plant grid coordinates x (= XS) = 20000m, y (= YS) = 10000m:
308
309XT      = UTM E         = 611267.2865 + 14138.9230 + (-7069.4615)
310                        = 618336.748 m
311
312YT      = UTM N = 3046565.8255 – (–14138.9230) + 7069.4615
313                = 3067774.210 m
314
315Reverse computation for UTM coordinates 618336.748 m E, 3067774.210 m:
316
317Plant x = [4998.8642 – (–14996.5925)] / 0.9997728332
318        = 20000.000 m
319
320Plant y = [(– 4998.8642) + 14996.5925)] / 0.9997728332
321        = 10000.000 m",Defined for two-dimensional coordinate systems.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2005-08-26,2000.83 2004.67,0
3229622,Affine orthogonal geometric transformation,0,"Note: These formulas have been transcribed from EPSG Guidance Note #7. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
323
324XT = XT0   +   XS .  k . dSX . cos q   +   YS .  k .  dSY  . sin q
325YT = YT0   Â–   XS .  k .  dSX . sin q    +   YS .  k .  dSY  . cos q
326
327where:
328
329XT0 ,YT0  = the coordinates of the origin point of the source coordinate reference system, expressed in the target coordinate reference system;
330dSX , dSY  = the length of one unit of the source  axis, expressed in units of the target axis, for the X axes and the Y- axes respectively;
331k = point scale factor of the target coordinate reference system in a chosen reference point;
332q  = the angle through which the source coordinate reference system axes must be rotated to coincide with the target coordinate refderence system axes (counter-clockwise is positive). Alternatively, the bearing (clockwise positive) of the source coordinate reference system Y-axis measured relative to target coordinate reference system north.","Source coordinate system: imaginary 3D seismic acquisition bin grid.  The two axes are orthogonal, but the unit on the I-axis is 25 metres, whilst the unit on the J-axis is 12.5 metres.
333The target projected coordinate system is WGS 84 / UTM Zone 31N and the origin of the bin grid (centre of bin 0,0) is defined at E = 456781.0, N = 5836723.0.  The projected coordinate system point scale factor at the bin grid origin is 0.99984.
334The map grid bearing of the I and J axes are 110* and 20* respectively.  Thus the angle through which both the positive I and J axes need to be rotated to coincide with the positive Easting axis and Northing axis respectively is +20 degrees.
335
336Hence:
337XT0 ,   =    456 781.0 m
338YT0     = 5 836 723.0 m
339dSX     = 25
340dSY     = 12.5
341k       = 0.99984
342q       = +20 degrees
343
344Forward calculation for centre of bin with coordinates: I = 300, J = 247:
345
346XT = Easting   = XT0   +   XS . k . dSX . cos q   +   YS . k . dSY  . sin q    = 464 855.62 m.
347
348YT = Northing = YT0   Â–   XS . k . dSX . sin q    +   YS . k . dSY  . cos q  = 5 837 055.90 m
349
350Reverse calculation for this point:
351XS = [( XT  – XT0) . cos qY  –  (YT – YT0) . sin qY ] / [k . dSX  . cos (qX – qY)] = 230 bins
352
353YS = [(XT   Â– XT0) . sin qX   +  (YT – YT0) . cos qX ] / [k . dSY . cos (qX – qY)]  = 162 bins",,"EPSG guidance note #7, http://www.epsg.org",EPSG,2000-06-10,,1
3549623,Affine geometric transformation,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
355
356General case.
357
358The geometric representation of the affine transformation is:
359XT = XT0   +  XS * k * MX * cos qX   +  YS * k * MY * sin qY
360YT = YT0  –  XS * k * MX *  sin qX   +  YS * k * MY * cos qY
361where:
362
363XT0 ,YT0  = the coordinates of the origin point of the source coordinate reference system, expressed in the target coordinate reference system;
364MX , MY  = the length of one unit of the source axis, expressed in units of the target axis, for the first and second source and target axis pairs respectively;
365qX , qY   = the angles about which the source coordinate reference system axes XS and YS must be rotated to coincide with the target coordinate reference system axes XT and YT respectively (counter-clockwise being positive).
366k = point scale factor of the target coordinate reference system in a chosen reference point;
367 
368Comparing the algebraic representation with the parameters of the parameteric form (code 9624) it can be seen that the parametric and geometric forms of the affine transformation are related as follows:
369A0  =  XT0
370A1  = k * MX * cos qX 
371A2  = k * MY * sin qY
372B0  =  YT0
373B1  =   Â– k * MX * sin qX
374B2  =   k *MY * cos qY
375
376Reversibility
377For the Affine Geometric Transformation, the reverse operation can be described by a different formula, as shown below, in which the same parameter values as the forward transformation may be used:
378
379XS = [( XT  – XT0) . cos qY  –  (YT – YT0) . sin qY ] / [k * MX  * cos (qX – qY)]
380YS = [(XT   Â– XT0) . sin qX   +  (YT – YT0) . cos qX ] / [k * MY * cos (qX – qY)]
381
382
383Orthogonal case
384
385If the source coordinate reference system happens to have orthogonal axes, that is both axes are rotated through the same angle to bring them into the direction of the orthogonal target coordinate reference system axes, i.e. qX = qY = q, then the Affine Geometric Transformation can be simplified to:
386
387XT = XT0   +   XS .  k . MX . cos q   +   YS .  k .  MY  . sin q
388YT = YT0   Â–   XS .  k .  MX . sin q    +   YS .  k .  MY  . cos q
389
390where:
391q  = the angle through which the source coordinate reference system axes must be rotated to coincide with the target coordinate refderence system axes (counter-clockwise is positive). Alternatively, the bearing (clockwise positive) of the source coordinate reference system Y-axis measured relative to target coordinate reference system north.
392
393The reverse formulas of the general case can also be simplified by replacing qX and qY with q:
394
395XS = [(XT  – XTO) * cos q   Â–  (YT – YTO) * sin q ] / [k * MX ]
396YS = [(XT   Â– XTO) * sin q   +  (YT – YTO) * cos q] / [k * MY ]
397
398In the EPSG dataset this orthogonal case (code 9622) has been deprecated. The formulas for the general case should be used, inserting q for both qX  and qY. The case has been documented here as part of the progression through increasing constraints on the degrees of freedom between the general case and the Similarity Transformation.",(none),,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2005-08-26,2004.67,0
3999624,Affine parametric transformation,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
400
401XT   =  A0  +  A1 * XS  +  A2 * YS
402YT   =  B0  +  B1 * XS  +  B2 * YS
403where
404XT , YT  are the coordinates of a point P in the target coordinate reference system;
405XS , YS   are the coordinates of P in the source coordinate reference system.
406
407Reversibility
408The reverse transformation is another affine transformation using the same formulas but with different parameter values.  The reverse parameter values, indicated by a prime (’), can be calculated from those of the forward transformation as follows:
409
410D    = A1 * B2   Â–   A2 * B1
411A0’ = (A2 * B0   Â–   B2 * A0) / D
412B0’ = (B1 * A0   Â–   A1 * B0) / D
413A1’ = +B2 / D
414A2’ = – A2 / D
415B1’ = – B1 / D
416B2’ = +A1 / D
417
418Then
419        XS   =  A0'  +  A1' * XT  +  A2' * YT
420                YS   =  B0'  +  B1' * XT  +  B2' *",(none),,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2005-08-23,2004.67,0
4219625,General polynomial (2nd-order),0,"The simplest of all polynomials is the general polynomial function. In order to avoid problems of numerical instability this type of polynomial should be used after reducing the input parameters, usually coordinate offsets U and V relative to a central evaluation point, to ‘manageable’ numbers, between –10 and +10 at most.
422
423U = XS - XS0 in defined units (which may not be those of the coordinate reference system),
424V = YS - YS0
425
426Then (XT - XT0) = (XS - XS0) + dX
427         (YT - YT0) = (YS - YS0) + dY
428or
429XT  = XS - XS0 + XT0 + dX
430YT  = YS - YS0 + YT0 + dY
431
432where
433XT , YT   are coordinates in the target coordinate reference system,
434XS , YS  are coordinates in the source coordinate reference system,
435XS0 , YS0 are coordinates of the evaluation point in the source coordinate reference system,
436XT0 , YT0  are coordinates of the evaluation point in the target coordinate reference system.
437
438and where
439dX = A0 + A1.U + A2.V + A3.U2 + A4.U.V + A5.V2
440dY = B0 + B1.U + B2.V +B3.U2 +B4.U.V +B5.V2",,,EPSG guidance note #7.,EPSG,2000-03-07,,1
4419626,General polynomial (3rd-order),0,"The simplest of all polynomials is the general polynomial function. In order to avoid problems of numerical instability this type of polynomial should be used after reducing the input parameters, usually coordinate offsets U and V relative to a central evaluation point, to ‘manageable’ numbers, between –10 and +10 at most.
442
443U = XS - XS0 in defined units (which may not be those of the coordinate reference system),
444V = YS - YS0
445
446Then (XT - XT0) = (XS - XS0) + dX
447         (YT - YT0) = (YS - YS0) + dY
448or
449XT  = XS - XS0 + XT0 + dX
450YT  = YS - YS0 + YT0 + dY
451
452where
453XT , YT   are coordinates in the target coordinate reference system,
454XS , YS  are coordinates in the source coordinate reference system,
455XS0 , YS0 are coordinates of the evaluation point in the source coordinate reference system,
456XT0 , YT0  are coordinates of the evaluation point in the target coordinate reference system.
457
458and where
459dX = A0 + A1.U + A2.V + A3.U2 + A4.U.V + A5.V2 + A6.U3 + A7.U2.V + A8.U.V2 + A9.V3
460dY = B0 + B1.U + B2.V +B3.U2 +B4.U.V +B5.V2 + B6.U3 +B7.U2.V +B8.U.V2 +B9.V3",,,EPSG guidance note #7.,EPSG,2000-03-07,,1
4619627,General polynomial (4th-order),0,"The simplest of all polynomials is the general polynomial function. In order to avoid problems of numerical instability this type of polynomial should be used after reducing the input parameters, usually coordinate offsets U and V relative to a central evaluation point, to ‘manageable’ numbers, between –10 and +10 at most.
462
463U = XS - XS0 in defined units (which may not be those of the coordinate reference system),
464V = YS - YS0
465
466Then (XT - XT0) = (XS - XS0) + dX
467         (YT - YT0) = (YS - YS0) + dY
468or
469XT  = XS - XS0 + XT0 + dX
470YT  = YS - YS0 + YT0 + dY
471
472where
473XT , YT   are coordinates in the target coordinate reference system,
474XS , YS  are coordinates in the source coordinate reference system,
475XS0 , YS0 are coordinates of the evaluation point in the source coordinate reference system,
476XT0 , YT0  are coordinates of the evaluation point in the target coordinate reference system.
477
478and where
479dX = A0 + A1.U + A2.V + A3.U2 + A4.U.V + A5.V2 + A6.U3 + A7.U2.V + A8.U.V2 + A9.V3 + A10.U4 + A11.U3.V + A12.U2.V2 + A13.U.V3 + A14.V4
480
481dY = B0 + B1.U + B2.V +B3.U2 +B4.U.V +B5.V2 + B6.U3 +B7.U2.V +B8.U.V2 +B9.V3 + B10.U4 + B11.U3.V + B12.U2.V2 + B13.U.V3 + B14.V4",,,EPSG guidance note #7.,EPSG,2000-03-07,,1
4829628,Reversible polynomial (2nd-order),1,See EPSG Guidance Note 7.,,Reversibility is subject to constraints.  See Guidance Note 7 for clarification.,EPSG guidance note #7.,EPSG,2000-03-07,99.64,1
4839629,Reversible polynomial (3rd-order),1,See EPSG Guidance Note 7.,,Reversibility is subject to constraints.  See Guidance Note 7 for clarification.,EPSG guidance note #7.,EPSG,2000-03-07,99.64,1
4849630,Reversible polynomial (4th-order),1,See EPSG Guidance Note 7.,"For geodetic transformation ED50 to ED87 (1)
485
486Offset unit:  degree
487Ordinate 1 of evaluation point X0  =   55° 00' 00.000""N  = +55 degrees
488Ordinate 2 of evaluation point Y0  =     0° 00' 00.000""E   =   +0 degrees
489
490Parameters:
491A0 = -5.56098E-06   A1 = -1.55391E-06   ...   A14 = -4.01383E-09
492B0 = +1.48944E-05   B2 = +2.68191E-05  ...   B14 = +7.62236E-09
493
494Forward calculation for:
495ED50 Latitude     = Xs =52* 30’30""N   =     +52.508333333 degrees
496ED50 Longitude  = Ys =  2*E=      +2.0 degrees   
497
498U = XS - X0 =  * ED50 - X0  = 52.508333333 - 55.0 = -2.491666667 degrees
499V = YS - Y0 =  * ED50 - Y0   = 2.0 - 0.0 = 2.0 degrees
500
501dX = A0 + A1.U + ... + A14.V4
502      = -5.56098E-06 + (-1.55391E-06 * -2.491666667) + ... + (-4.01383E-09 * 2.0^4)
503      = -3.12958E-06 degrees
504
505dY = B0 + B1.U + ... + B14.V4
506      = +1.48944E-05 + (2.68191E-05 * -2.491666667) + ... + (7.62236E-09 * 2.0^4)
507      = +9.80126E-06 degrees
508
509Then  ED87 Latitude  =   XT = XS + dX
510                                  =  52.508333333 - 3.12958E-06   degrees
511                                  = 52* 30’ 29.9887"" N
512
513ED87 Longitude  =   YT = YS + dY
514                           = 2* 00’ 00.0353"" E
515
516
517Reverse calculation for transformation ED50 to ED87 (1).
518The transformation method for the ED50 to ED87 (1) transformation, 4th-order reversible polynomial, is reversible. The same formulas may be applied for the reverse calculation, but coefficients A0 through A14 and B0 through B14 are applied with reversal of their signs. Sign reversal is not applied to the coordinates of the evaluation point. Thus:
519Ordinate 1 of evaluation point X0  =   55° 00' 00.000""N  = +55 degrees
520Ordinate 2 of evaluation point Y0  =     0° 00' 00.000""E   =   +0 degrees
521A0  = +5.56098E-06   A1 = +1.55391E-06   ...   A14 = +4.01383E-09
522B0  = -1.48944E-05    B1 = -2.68191E-05    ...   B14 = -7.62236E-09
523
524Reverse calculation for:
525ED87 Latitude     = XS = 52° 30’29.9887""N   =     +52.5083301944 degrees
526ED87 Longitude  = YS =   2° 00’ 00.0353"" E   =     +2.0000098055 degrees   
527
528U = 52.5083301944 - 55.0 = -2.4916698056 degrees
529V = 2.0000098055 - 0.0 = 2.0000098055 degrees
530
531dX = A0 + A1.U + ... + A14.V4
532      = +5.56098E-06 + (1.55391E-06 * -2.491666667) + ... + (4.01383E-09 * 2.0000098055^4)
533      = +3.12957E-06 degrees
534
535dY = B0 + B1.U + ... + B14.V4
536      = -1.48944E-05 + (-2.68191E-05 * -2.491666667) + ... + (-7.62236E-09 * 2.0000098055^4)
537      = -9.80124E-06 degrees
538
539Then ED50 Latitude  =   XT = XS + dX
540                                 = 52.5083301944 + 3.12957E-06   degrees
541                                 = 52° 30’ 30.000"" N
542
543ED50 Longitude  =   YT = YS + dY
544                           = 2° 00’ 00.000"" E",Reversibility is subject to constraints.  See Guidance Note 7 for clarification.,EPSG guidance note #7.,EPSG,2000-03-07,99.64,1
5459631,Complex polynomial (3rd-order),0,"The relationship between two projected coordinate reference systems may be approximated more elegantly by a single polynomial regression formula written in terms of complex numbers. The advantage is that the dependence between the ‘A’ and ‘B’ coefficients (for U and V) is taken into account in the formula, resulting in fewer coefficients for the same order polynomial. A third-order polynomial in complex numbers is used in Belgium.  A fourth-order polynomial in complex numbers is used in The Netherlands for transforming coordinates referenced to the Amersfoort / RD system to and from ED50 / UTM.
546
547(dX + i. dY) = (A1 + i. A2).(U + i.V) + (A3 + i. A4).(U + i.V)^2 + (A5 + i. A6).(U + i.V)^3
548
549where U = (XS - XS0).10-5
550and     V = (YS - YS0).10-5
551
552Then
553XT  = XS - XS0 + XT0 + dX
554YT  = YS - YS0 + YT0 + dY
555
556where
557XT , YT      are coordinates in the target coordinate reference system,
558XS , YS      are coordinates in the source coordinate reference system,
559XS0 , YS0   are coordinates of the evaluation point in the source coordinate reference system,
560XT0 , YT0   are coordinates of the evaluation point in the target coordinate reference system.
561
562Note that the zero order coefficients of the general polynomial, A0 and B0, have apparently disappeared.  In reality they are absorbed by the different coordinates of the source and of the target evaluation point, which in this case, are numerically very different because of the use of two different projected coordinate reference systems for source and target.
563
564The transformation parameter values (the coefficients) are not reversible.  For the reverse transformation a different set of parameter values are required, used within the same formulas as the forward direction","For transformation Belge Lambert 72 to ED50 / UTM zone 31N,
565
566Eo1 = 0
567No1 = 0
568Eo2 = 449681.702
569No2 = 5460505.326
570A1 = -71.3747
571A2 = 1858.8407
572A3 = -5.4504
573A4 = -16.9681
574A5 = 4.0783
575A6 = 0.2193
576
577For source coordinate system E1=200000  N1=100000, then
578E2 = 647737.377  N2 = 5564124.227.",Coordinate pairs treated as complex numbers.  This exploits the correlation between the polynomial coefficients and leads to a smaller number of coefficients than the regular 3rd-order polynomial.,EPSG guidance note #7.,EPSG,2000-03-07,,1
5799632,Complex polynomial (4th-order),0,"The relationship between two projected coordinate reference systems may be approximated more elegantly by a single polynomial regression formula written in terms of complex numbers. The advantage is that the dependence between the ‘A’ and ‘B’ coefficients (for U and V) is taken into account in the formula, resulting in fewer coefficients for the same order polynomial. A third-order polynomial in complex numbers is used in Belgium.  A fourth-order polynomial in complex numbers is used in The Netherlands for transforming coordinates referenced to the Amersfoort / RD system to and from ED50 / UTM.
580
581(dX + i. dY) = (A1 + i. A2).(U + i.V) + (A3 + i. A4).(U + i.V)^2 + (A5 + i. A6).(U + i.V)^3 + (A7 + i.A8).(U + i.V)^4
582
583where U = (XS - XS0).10-5
584and     V = (YS - YS0).10-5
585
586Then
587XT  = XS - XS0 + XT0 + dX
588YT  = YS - YS0 + YT0 + dY
589
590where
591XT , YT      are coordinates in the target coordinate reference system,
592XS , YS      are coordinates in the source coordinate reference system,
593XS0 , YS0   are coordinates of the evaluation point in the source coordinate reference system,
594XT0 , YT0   are coordinates of the evaluation point in the target coordinate reference system.
595
596Note that the zero order coefficients of the general polynomial, A0 and B0, have apparently disappeared.  In reality they are absorbed by the different coordinates of the source and of the target evaluation point, which in this case, are numerically very different because of the use of two different projected coordinate reference systems for source and target.
597
598The transformation parameter values (the coefficients) are not reversible.  For the reverse transformation a different set of parameter values are required, used within the same formulas as the forward direction.","For transformation RD / Netherlands New to ED50 / UTM zone 31N,
599
600Eo1 = 155000
601No1 = 463000
602Eo2 = 663395.607
603No2 = 5781194.380
604A1 = -51.681
605A2 = 3290.525
606A3 = 20.172
607A4 = 1.133
608A5 = 2.075
609A6 = 0.251
610A7 = 0.075
611A8 = -0.012
612
613For source coordinate system E1=200000  N1=500000, then
614E2 =707155.557  N2 = 5819663.128.",Coordinate pairs treated as complex numbers.  This exploits the correlation between the polynomial coefficients and leads to a smaller number of coefficients than the regular 4th-order polynomial.,EPSG guidance note #7.,EPSG,2000-03-07,,1
6159633,Ordnance Survey National Transformation,1,See information source.,See information source.,Geodetic transformation between ETRS89 (or WGS 84) and OSGB36 / National Grid.  Uses ETRS89 / National Grid as an intermediate coordinate system for bi-linear interpolation of gridded grid coordinate differences.,http://www.gps.gov.uk/gpssurveying.asp,EPSG,2004-04-27,2004.19,0
6169634,Maritime Provinces polynomial interpolation,0,"The transformation makes use of a residual file for each Canadian maritime province.  The process of residual interpolation accounts for local variations in the coordinate system and provides a transformation accuracy of +/- 5 cm.
617
618By using a second residual file, the transformation may be reversed.  Only one residual file is in use by the method during any given execution.",(none),This transformation is an executable module within the application NBGeocalc.  It is an adaptation of the ESTPM program developed by Geodetic Survey of Canada.,Survey of New Brunswick,EPSG,2000-10-19,,0
6199635,Geographic3D to Geographic2D+GravityRelatedHeight,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
620
621This is a complex, multi-step transformation, involving the application of a geoid height difference interpolated at a point in a ""geoid model"". The geoid model should be available as a regular grid of latitude and longitude with the height of the geoid above the ellipsoid at each grid node. Only the height is affected by this transformation; the geodetic latitude and longitude are not.
622
623The transformation involves the following sequence of steps:
624·  Selection of a subset of the geoid file covering the extent of the points to be transformed.
625·  If the geoid file is not based on the source or target CRS, it needs to be transformed first. This involves transformation of the chosen subset of the geoid file from its orignal Geographic 3D CRS to the Geographic 3D CRS that is the source or the target of this transformation.
626·  Calculation of the height of the geoid above the ellipsoid (""geoid undulation"") at the relevant point(s). This is achieved through a bi-linear interpolation of the geoid undulation, using the latitude and longitude to locate the point in the sub-grid.  This step results in the height of the geoid above the ellipsoid (N) of the Geographic 3D CRS, whether source or target.
627·  At each point, the application of the calculated geoid undulation to the height to be transformed.
628
629H=h-N for Geographic3D to Geographic2D+GravityRelatedHeight
630
631h=H+N for Geographic2D+GravityRelatedHeight to Geographic3D
632
633where h = the ellipsoidal height (height above the ellipsoid in a geographic 3D CRS)
634and H = the Gravity-Related Height component of the compound CRS.",(none),"Transformation from a Geographic 3D CRS to a Compound CRS consisting of a Geographic 2D CRS and a Vertical CRS, or vice versa. The Geographic 3D and the Geographic 2D CRS must be based on the same Geodetic Datum.","EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-27,2004.19 2004.34,0
6359636,Molodensky-Badekas 10-parameter transformation,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
636
637To eliminate high correlation between the translations and rotations in the derivation of parameter values for the Helmert transformation methods (coordinate operation method codes 9606 and 9607), instead of the rotations being derived about the geocentric coordinate reference system origin they may be derived at a location within the points used in the determination. Three additional parameters, the coordinates of the rotation point, are then required. The formula is:
638
639   (Xt)             (  1       +Rz    -Ry)      (Xs - Xp)      (Xp)       (dX)
640   (Yt)  =  M *  ( -Rz      1      +Rx)  *  (Ys - Yp)  +  (Yp)  +  (dY)
641   (Zt)              ( +Ry   -Rx       1 )      (Zs - Zp)      (Zp)       (dZ)
642
643and the parameters are defined as:
644
645(dX, dY, dZ)   : Translation vector, to be added to the point's position vector in the source coordinate system in order to transform from source coordinate reference system to target coordinate reference system; also: the coordinates of the origin of source coordinate reference system in the target frame.
646
647(Rx, Ry, Rz)   : Rotations to be applied to the coordinate reference frame.  The sign convention is such that a positive rotation of the frame about an axis is defined as a clockwise rotation of the coordinate reference frame when viewed from the origin of the Cartesian coordinate system in the positive direction of that axis, that is a positive rotation about the Z-axis only from source coordinate reference system to target coordinate reference system will result in a smaller longitude value for the point in the target coordinate reference system. Although rotation angles may be quoted in any angular unit of measure, the formula as given here requires the angles to be provided in radians.
648
649(Xp, Yp, Zp)   : Coordinates of the point about which the coordinate reference frame is rotated, given in the source Cartesian coordinate reference system.
650
651M                  : The scale factor to be applied to the position vector in the source coordinate reference system  in order to obtain the correct scale of the target coordinate reference system. M = (1+dS*10^-6), where dS is the scale correction expressed in parts per million.
652
653Reversibility.
654The Molodensky-Badekas transformation in a strict mathematical sense is not reversible, i.e. in principle the same parameter values cannot be used to execute the reverse transformation. This is because the evaluation point coordinates are in the forward direction source coordinate reference system and the rotations have been derived about this point. They should not be applied about the point having the same coordinate values in the target coordinate reference system, as is required for the reverse transformation. However, in practical application there are exceptions when applied to the approximation of small differences between the geometry of a set of points in two different coordinate reference systems. The typical vector difference in coordinate values is in the order of 6*10^1 to 6*10^2 metres, whereas the evaluation point on or near the surface of the earth is 6.3*10^6 metres from the origin of the coordinate systems at the Earth’s centre. This difference of four or five orders of magnitude allows the transformation in practice to be considered reversible. Note that in the reverse transformation, only the signs of the translations and rotation parameter values are reversed; the coordinates of the evaluation point remain unchanged.","Input point:
655Coordinate reference system: La Canoa (geographic 2D)
656  Latitude =     9 deg 35 min 00.386 sec N
657  Longitude = 66 deg 04 min 48.091 sec W
658This is taken to be geographic 3D with an assumed Ellipsoidal height hS  =  201.465 m
659
660This transforms to Cartesian geocentric coords:
661   XS =  2 550 408.965 m
662   YS = -5 749 912.266 m
663   ZS =   1 054 891.114 m
664
665Transformation parameters La Canoa to REGVEN:
666   dX  = -270.933 m
667   dY  = +115.599 m
668   dZ  = -360.226 m
669   RX   = -5.266 sec = -0.000025530288 radians
670   RY  = -1.238 sec = -0.000006001993 radians
671   RZ  = +2.381 sec =  0.000011543414 radians
672   dS   = -5.109 ppm
673   Ordinate 1 of evaluation point  = 2464351.59 m
674   Ordinate 2 of evaluation point = -5783466.61 m
675   Ordinate 3 of evaluation point =    974809.81 m
676
677Application of the 10 parameter Molodenski-Badekas Transformation results in REGVEN geocentric coordinates of:
678   XT =  2 550 138.467 m
679   YT = -5 749 799.862 m
680   ZT  =  1 054 530.826 m
681
682This converts into:
683   Latitude =       9 deg 34 min 49.001 sec N
684   Longitude =  66 deg 04 min 54.705 sec W
685   Ellipsoidal height =  -18.10 m
686on the REGVEN geographic 3D coordinate reference system.
687
688Because the source coordinate reference system was 2D, the target system ellipsoidal height is ignored and the results treated as a geographic 2D coordinate reference system:
689   Latitude =       9 deg 34 min 49.001 sec N
690   Longitude =  66 deg 04 min 54.705 sec W",The [7-parameter] Coordinate Frame rotation method (code 9607) is a specific case of the Molodenski-Badekas 10-parameter transformation in which the evaluation point is the origin of the geocentric coordinate system at which coordinate values are zero.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-03-17,2002.51 2004.47,0
6919637,Degree representation conversion: deg to DMSH,1,"In the formulas that follow, the coordinate strings are symbolically represented as follows:
692
693deg                     decimal degrees
694adeg                   absolute value of decimal degrees
695ideg                     integer degrees
696sdeg                   signed integer degree
697min                      real-number minutes
698imin                      integer minutes
699sec                      real-number seconds
700lathem, lonhem    hemisphere abbreviation
701
702
703Forward calculation from decimal degree representation to DMSH representation:
704adeg = ABS(deg)
705ideg = INT(adeg)
706
707min = (adeg - ideg) * 60
708imin = INT(min)
709sec =  (min - imin) * 60
710
711Then for latitude, if deg < 0, lathem = S else lathem = N
712For longitude, if deg < 0, lonhem = W else lonhem = E
713
714Reverse calculation from DMSH representation to decimal degree representation:
715deg = (ideg + imin/60 + sec/3600) * H
716where for latitude H = 1 if lathem = N and H = -1 if lathem = S
717and for longitude  H = 1 if lonhem = E and H = -1 if lonhem = W","Source CRS = WGS 84 (deg) (CRS code 63266405).
718Latitude = 35.75255, longitude = -85.20415
719
720Target CRS in DMSH = WGS 84 (CRS code 4326)
721Latitude = 35°45’09.18”N, longitude =  85°12’14.94”W",Applies to 2D and the horizontal component of 3D ellipsoidal  systems.,EPSG guidance note #7.,EPSG,2002-11-22,,1
7229638,Degree representation conversion: degH to DMSH,1,"In the formulas that follow, the coordinate strings are symbolically represented as follows:
723
724deg                     decimal degrees
725adeg                   absolute value of decimal degrees
726ideg                     integer degrees
727sdeg                   signed integer degree
728min                      real-number minutes
729imin                      integer minutes
730sec                      real-number seconds
731lathem, lonhem    hemisphere abbreviation
732
733
734In this conversion (both forward and reverse) the hemisphere parameter remains unchanged and retains its position in the respective coordinate strings.
735
736Forward calculation from degH representation to DMSH representation:
737ideg = INT(adeg)
738
739min = (adeg - ideg) * 60
740imin = INT(min)
741sec =  (min - imin) * 60
742
743Reverse calculation from DMSH representation to decimal degree representation:
744adeg = (ideg + imin/60 + sec/3600)","Source CRS = WGS 84 (degH) (CRS code 63266406).
745Latitude = 35.75255N, longitude = 85.20415W
746
747Target CRS in DMSH = WGS 84 (CRS code 4326)
748Latitude = 35°45’09.18”N, longitude =  85°12’14.94”W",Applies to 2D and the horizontal component of 3D ellipsoidal  systems.,EPSG guidance note #7.,EPSG,2002-11-22,,1
7499639,Degree representation conversion: Hdeg to DMSH,1,"In the formulas that follow, the coordinate strings are symbolically represented as follows:
750
751deg                     decimal degrees
752adeg                   absolute value of decimal degrees
753ideg                     integer degrees
754sdeg                   signed integer degree
755min                      real-number minutes
756imin                      integer minutes
757sec                      real-number seconds
758lathem, lonhem    hemisphere abbreviation
759
760
761In this conversion the hemisphere parameters retain their values but change their positions in their respective coordinate strings from the end of the strings to the beginnings (both forward and reverse).
762
763Forward calculation from Hdeg representation to DMSH representation:
764First, re-order fields from
765          lathem, lat_adeg   and    lonhem, lon_adeg
766to       lat_adeg, lathem   and    lon_adeg, lonhem 
767
768Then
769ideg = INT(adeg)
770
771min = (adeg - ideg) * 60
772imin = INT(min)
773sec =  (min - imin) * 60
774
775
776Reverse calculation from DMSH representation to Hdeg representation:
777adeg = (ideg + imin/60 + sec/3600)
778
779Then re-order fields from
780          lat_adeg, lathem   and    lon_adeg, lonhem
781to       lathem, lat_adeg   and    lonhem, lon_adeg","Source CRS = WGS 84 (Hdeg) (CRS code 63266407).
782Latitude = N35.75255, longitude = W85.20415
783
784Target CRS in DMSH = WGS 84 (CRS code 4326)
785Latitude = 35°45’09.18”N, longitude =  85°12’14.94”W",Applies to 2D and the horizontal component of 3D ellipsoidal  systems.,EPSG guidance note #7.,EPSG,2002-11-22,,1
7869640,Degree representation conversion: DM to DMSH,1,"In the formulas that follow, the coordinate strings are symbolically represented as follows:
787
788deg                     decimal degrees
789adeg                   absolute value of decimal degrees
790ideg                     integer degrees
791sdeg                   signed integer degree
792min                      real-number minutes
793imin                      integer minutes
794sec                      real-number seconds
795lathem, lonhem    hemisphere abbreviation
796
797
798Forward calculation from DM representation to DMSH representation:
799
800ideg = ABS(sdeg)
801
802imin = INT(min)
803sec = (min - imin) * 60
804
805If lat_sdeg < 0, lathem = S else lathem = N
806If lon_sdeg < 0, lonhem = W else lathem = E
807
808
809Reverse calculation from DMSH representation to DM representation:
810sdeg = ideg * H
811where for latitude, H = 1 if lathem = N and H = -1 if lathem = S
812and for longitude  H = 1 if lonhem = E and H = -1 if lonhem = W
813
814Then
815min = imin + (sec / 60)","Source CRS = WGS 84 (DM) (CRS code 63266408).
816Latitude = 35°45.153’, longitude = -85°12.249’
817
818Target CRS in DMSH = WGS 84 (CRS code 4326)
819Latitude = 35°45’09.18”N, longitude =  85°12’14.94”W",Applies to 2D and the horizontal component of 3D ellipsoidal  systems.,EPSG guidance note #7.,EPSG,2002-11-22,,1
8209641,Degree representation conversion: DMH to DMSH,1,"In the formulas that follow, the coordinate strings are symbolically represented as follows:
821
822deg                     decimal degrees
823adeg                   absolute value of decimal degrees
824ideg                     integer degrees
825sdeg                   signed integer degree
826min                      real-number minutes
827imin                      integer minutes
828sec                      real-number seconds
829lathem, lonhem    hemisphere abbreviation
830
831
832The degree and hemisphere parameters remain unchanged in this conversion (both forward and reverse) and also retain their position in their respective coordinate strings.
833
834Forward calculation from DMH representation to DMSH representation:
835imin = INT(min)
836sec = (min - imin) * 60
837
838Reverse calculation from DMSH representation to DMH representation:
839min = imin + (sec / 60)","Source CRS = WGS 84 (DMH) (CRS code 63266409).
840Latitude = 35°45.153’ N, longitude = 85°12.249’ W
841
842Target CRS in DMSH = WGS 84 (CRS code 4326)
843Latitude = 35°45’09.18”N, longitude =  85°12’14.94”W",Applies to 2D and the horizontal component of 3D ellipsoidal  systems.,EPSG guidance note #7.,EPSG,2002-11-22,,1
8449642,Degree representation conversion: HDM to DMSH,1,"In the formulas that follow, the coordinate strings are symbolically represented as follows:
845
846deg                     decimal degrees
847adeg                   absolute value of decimal degrees
848ideg                     integer degrees
849sdeg                   signed integer degree
850min                      real-number minutes
851imin                      integer minutes
852sec                      real-number seconds
853lathem, lonhem    hemisphere abbreviation
854
855
856In this conversion the degree parameters remain unchanged in this conversion (both forward and reverse). The hemisphere parameters retain their values but change their positions in their respective coordinate strings.
857
858Forward calculation from HDM representation to DMSH representation:
859imin = INT(min)
860sec = (min - imin) * 60
861Then reorder fields from hem, ideg, imin, sec to ideg, imin, sec, hem.
862
863Reverse calculation from DMSH representation to HDM representation:
864min = imin + (sec / 60)
865Then re-order fields from ideg, min, hem to hem, ideg, min.","Source CRS = WGS 84 (HDM) (CRS code 63266410).
866Latitude = N35°45.153’, longitude =  W85°12.249’
867
868Target CRS in DMSH = WGS 84 (CRS code 4326)
869Latitude = 35°45’09.18”N, longitude =  85°12’14.94”W",Applies to 2D and the horizontal component of 3D ellipsoidal  systems.,EPSG guidance note #7.,EPSG,2002-11-22,,1
8709643,Degree representation conversion: DMS to DMSH,1,"In the formulas that follow, the coordinate strings are symbolically represented as follows:
871
872deg                     decimal degrees
873adeg                   absolute value of decimal degrees
874ideg                     integer degrees
875sdeg                   signed integer degree
876min                      real-number minutes
877imin                      integer minutes
878sec                      real-number seconds
879lathem, lonhem    hemisphere abbreviation
880
881
882In this conversion (both forward and reverse) the minute and second parameters remain unchanged.
883
884Forward calculation from DMS representation to DMSH representation:
885
886ideg = ABS(sdeg)
887If lat_sdeg < 0, lathem = S else lathem = N
888If lon_sdeg < 0, lonhem = W else lathem = E
889
890Reverse calculation from DMSH representation to DMS representation:
891sdeg = ideg * H
892where for latitude, H = 1 if lathem = N and H = -1 if lathem = S
893and for longitude  H = 1 if lonhem = E and H = -1 if lonhem = W","Source CRS = WGS 84 (DMS) (CRS code 63266411).
894Latitude = 35°45’09.18”, longitude = -85°12’14.94”
895
896Target CRS in DMSH = WGS 84 (CRS code 4326)
897Latitude = 35°45’09.18”N, longitude =  85°12’14.94”W",Applies to 2D and the horizontal component of 3D ellipsoidal  systems.,EPSG guidance note #7.,EPSG,2002-11-22,,1
8989644,Degree representation conversion: HDMS to DMSH,1,"In the formulas that follow, the coordinate strings are symbolically represented as follows:
899
900deg                     decimal degrees
901adeg                   absolute value of decimal degrees
902ideg                     integer degrees
903sdeg                   signed integer degree
904min                      real-number minutes
905imin                      integer minutes
906sec                      real-number seconds
907lathem, lonhem    hemisphere abbreviation
908
909
910In this conversion the parameter values remain unchanged but are re-ordered.
911
912For the forward calculation from HDMS representation to DMSH representation, for each of latitude and longitude re-order the fields:
913          from          hem, ideg, imin, sec
914          to            ideg, imin, sec, hem
915
916For the reverse calculation from DMSH representation to HDMS representation, for each of latitude and longitude re-order the fields:
917          from          ideg, imin, sec, hem
918          to            hem, ideg, imin, sec","Source CRS = WGS 84 (HDMS) (CRS code 63266412).
919Latitude = N35°45’09.18”, longitude =  W85°12’14.94”
920
921Target CRS in DMSH = WGS 84 (CRS code 4326)
922Latitude = 35°45’09.18”N, longitude =  85°12’14.94”W",Applies to 2D and the horizontal component of 3D ellipsoidal  systems.,EPSG guidance note #7.,EPSG,2002-11-22,,1
9239645,General polynomial of degree 2,0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
924
925The simplest of all polynomials is the general polynomial function. In order to avoid problems of numerical instability this type of polynomial should be used after reducing the coordinate values in both the source and the target coordinate reference system to ‘manageable’ numbers, between –10 and +10 at most.  This is achieved by working with offsets relative to a central evaluation point, scaled to the desired number range by applying a scaling factor to the coordinate offsets.
926
927Hence an evaluation point is chosen in the source coordinate reference system (XS0, YS0) and in the target coordinate reference system (XT0, YT0).  Often these two sets of coordinates do not refer to the same physical point but two points are chosen that have the same coordinate values in both the source and the target coordinate reference system.  (When the two points have identical coordinates, these parameters are conveniently eliminated from the formulas, but the general case where the coordinates differ is given here).
928
929The selection of an evaluation point in each of the two coordinate reference systems allows the point coordinates in both to be reduced as follows:
930XS - XS0
931YS - YS0
932and
933XT – XT0
934YT – YT0
935These coordinate differences are expressed in their own unit of measure, which may not be the same as that of the corresponding coordinate reference system. )
936
937A further reduction step is usually necessary to bring these coordinate differences into the desired numerical range by applying a scaling factor to the coordinate differences in order to reduce them to a value range that may be applied to the polynomial formulae below without introducing numerical precision errors:
938
939U = mS.(XS - XS0)
940V = mS.(YS - YS0)
941
942where
943XS , YS  are coordinates in the source coordinate reference system,
944XS0 , YS0 are coordinates of the evaluation point in the source coordinate reference system,
945mS is the scaling factor applied the coordinate differences in the source coordinate reference system.
946
947The normalised coordinates U and V of the point whose coordinates are to be transformed are used as input to the polynomial transformation formula. In order to control the numerical range of the polynomial coefficients An and Bn the output coordinate differences dX and dY are multiplied by a scaling factor, mT.
948
949mT.dX = A0 + A1.U + A2.V + A3.U^2 + A4.U.V + A5.V^2
950
951mT.dY = B0 + B1.U + B2.V + B3.U^2 + B4.U.V + B5.V^2
952
953from which dX and dY are evaluated. These will be in the units of the target coordinate reference system.
954
955The polynomial coefficients are given as parameters of the form Aumvn and Bumvn, where m is the power to which U is raised and n is the power to which V is raised. For example, A3 is represented as coordinate operation parameter Au2v0.
956
957The relationship between the two coordinate reference systems can now be written as follows:
958
959        (XT - XT0) = (XS – XS0) + dX
960(YT - YT0) = (YS – YS0) + dY
961or
962        XT = XS – XS0  + XT0 + dX
963YT = YS – YS0 + YT0 + dY
964
965where:
966XT , YT  are coordinates in the target coordinate reference system,
967XS , YS  are coordinates in the source coordinate reference system,
968XS0 , YS0 are coordinates of the evaluation point in the source coordinate reference system,
969XT0 , YT0  are coordinates of the evaluation point in the target coordinate reference system,
970dX, dY   are derived through the scaled polynomial formulas.",(none),,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-12-21,,0
9719646,General polynomial of degree 3,0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
972
973The simplest of all polynomials is the general polynomial function. In order to avoid problems of numerical instability this type of polynomial should be used after reducing the coordinate values in both the source and the target coordinate reference system to ‘manageable’ numbers, between –10 and +10 at most.  This is achieved by working with offsets relative to a central evaluation point, scaled to the desired number range by applying a scaling factor to the coordinate offsets.
974
975Hence an evaluation point is chosen in the source coordinate reference system (XS0, YS0) and in the target coordinate reference system (XT0, YT0).  Often these two sets of coordinates do not refer to the same physical point but two points are chosen that have the same coordinate values in both the source and the target coordinate reference system.  (When the two points have identical coordinates, these parameters are conveniently eliminated from the formulas, but the general case where the coordinates differ is given here).
976
977The selection of an evaluation point in each of the two coordinate reference systems allows the point coordinates in both to be reduced as follows:
978XS - XS0
979YS - YS0
980and
981XT – XT0
982YT – YT0
983These coordinate differences are expressed in their own unit of measure, which may not be the same as that of the corresponding coordinate reference system. )
984
985A further reduction step is usually necessary to bring these coordinate differences into the desired numerical range by applying a scaling factor to the coordinate differences in order to reduce them to a value range that may be applied to the polynomial formulae below without introducing numerical precision errors:
986
987U = mS.(XS - XS0)
988V = mS.(YS - YS0)
989
990where
991XS , YS  are coordinates in the source coordinate reference system,
992XS0 , YS0 are coordinates of the evaluation point in the source coordinate reference system,
993mS is the scaling factor applied the coordinate differences in the source coordinate reference system.
994
995The normalised coordinates U and V of the point whose coordinates are to be transformed are used as input to the polynomial transformation formula. In order to control the numerical range of the polynomial coefficients An and Bn the output coordinate differences dX and dY are multiplied by a scaling factor, mT.
996
997mT.dX = A0 + A1.U + A2.V + A3.U^2 + A4.U.V + A5.V^2 + A6.U^3 + A7.U^2.V + A8.U.V^2 + A9.V^3
998
999mT.dY = B0 + B1.U + B2.V + B3.U^2 + B4.U.V + B5.V^2 + B6.U^3 + B7.U^2.V + B8.U.V^2 + B9.V^3
1000
1001from which dX and dY are evaluated. These will be in the units of the target coordinate reference system.
1002
1003The polynomial coefficients are given as parameters of the form Aumvn and Bumvn, where m is the power to which U is raised and n is the power to which V is raised. For example, A7 is represented as coordinate operation parameter Au2v1.
1004
1005The relationship between the two coordinate reference systems can now be written as follows:
1006
1007        (XT - XT0) = (XS – XS0) + dX
1008(YT - YT0) = (YS – YS0) + dY
1009or
1010        XT = XS – XS0  + XT0 + dX
1011YT = YS – YS0 + YT0 + dY
1012
1013where:
1014XT , YT  are coordinates in the target coordinate reference system,
1015XS , YS  are coordinates in the source coordinate reference system,
1016XS0 , YS0 are coordinates of the evaluation point in the source coordinate reference system,
1017XT0 , YT0  are coordinates of the evaluation point in the target coordinate reference system,
1018dX, dY   are derived through the scaled polynomial formulas.",(none),,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-12-21,,0
10199647,General polynomial of degree 4,0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1020
1021The simplest of all polynomials is the general polynomial function. In order to avoid problems of numerical instability this type of polynomial should be used after reducing the coordinate values in both the source and the target coordinate reference system to ‘manageable’ numbers, between –10 and +10 at most.  This is achieved by working with offsets relative to a central evaluation point, scaled to the desired number range by applying a scaling factor to the coordinate offsets.
1022
1023Hence an evaluation point is chosen in the source coordinate reference system (XS0, YS0) and in the target coordinate reference system (XT0, YT0).  Often these two sets of coordinates do not refer to the same physical point but two points are chosen that have the same coordinate values in both the source and the target coordinate reference system.  (When the two points have identical coordinates, these parameters are conveniently eliminated from the formulas, but the general case where the coordinates differ is given here).
1024
1025The selection of an evaluation point in each of the two coordinate reference systems allows the point coordinates in both to be reduced as follows:
1026XS - XS0
1027YS - YS0
1028and
1029XT – XT0
1030YT – YT0
1031These coordinate differences are expressed in their own unit of measure, which may not be the same as that of the corresponding coordinate reference system. )
1032
1033A further reduction step is usually necessary to bring these coordinate differences into the desired numerical range by applying a scaling factor to the coordinate differences in order to reduce them to a value range that may be applied to the polynomial formulae below without introducing numerical precision errors:
1034
1035U = mS.(XS - XS0)
1036V = mS.(YS - YS0)
1037
1038where
1039XS , YS  are coordinates in the source coordinate reference system,
1040XS0 , YS0 are coordinates of the evaluation point in the source coordinate reference system,
1041mS is the scaling factor applied the coordinate differences in the source coordinate reference system.
1042
1043The normalised coordinates U and V of the point whose coordinates are to be transformed are used as input to the polynomial transformation formula. In order to control the numerical range of the polynomial coefficients An and Bn the output coordinate differences dX and dY are multiplied by a scaling factor, mT.
1044
1045mT.dX = A0 + A1.U + A2.V + A3.U^2 + A4.U.V + A5.V^2 + A6.U^3 + A7.U^2.V + A8.U.V^2 + A9.V^3
1046            + A10.U^4 + A11.U^3.V + A12.U^2.V^2 + A13.U.V^3 + A14.V^4
1047
1048mT.dY = B0 + B1.U + B2.V + B3.U^2 + B4.U.V + B5.V^2 + B6.U^3 + B7.U^2.V + B8.U.V^2 + B9.V^3
1049            + B10.U^4 + B11.U^3.V + B12.U^2.V^2 + B13.U.V^3 + B14.V^4
1050
1051from which dX and dY are evaluated. These will be in the units of the target coordinate reference system.
1052
1053The polynomial coefficients are given as parameters of the form Aumvn and Bumvn, where m is the power to which U is raised and n is the power to which V is raised. For example, A13 is represented as coordinate operation parameter Au1v3.
1054
1055The relationship between the two coordinate reference systems can now be written as follows:
1056
1057        (XT - XT0) = (XS – XS0) + dX
1058(YT - YT0) = (YS – YS0) + dY
1059or
1060        XT = XS – XS0  + XT0 + dX
1061YT = YS – YS0 + YT0 + dY
1062
1063where:
1064XT , YT  are coordinates in the target coordinate reference system,
1065XS , YS  are coordinates in the source coordinate reference system,
1066XS0 , YS0 are coordinates of the evaluation point in the source coordinate reference system,
1067XT0 , YT0  are coordinates of the evaluation point in the target coordinate reference system,
1068dX, dY   are derived through the scaled polynomial formulas.",(none),,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-12-21,,0
10699648,General polynomial of degree 6,0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as limitations in the transcription will be avoided.
1070
1071The simplest of all polynomials is the general polynomial function. In order to avoid problems of numerical instability this type of polynomial should be used after reducing the coordinate values in both the source and the target coordinate reference system (CRS) to ‘manageable’ numbers, between –10 and +10 at most.  This is achieved by working with offsets relative to a central evaluation point, scaled to the desired number range by applying a scaling factor to the coordinate offsets.
1072
1073Hence an evaluation point is chosen in the source CRS (XS0, YS0) and in the target CRS (XT0, YT0).  Often these two sets of coordinates do not refer to the same physical point but two points are chosen that have the same coordinate values in both the source and the target CRS.  (When the two points have identical coordinates, these parameters are conveniently eliminated from the formulas, but the general case where the coordinates differ is given here).
1074
1075The selection of an evaluation point in each of the two CRSs allows the point coordinates in both to be reduced as follows:
1076XS - XS0
1077YS - YS0
1078and
1079XT – XT0
1080YT – YT0
1081These coordinate differences are expressed in their own unit of measure, which may not be the same as that of the corresponding CRS.)
1082
1083A further reduction step is usually necessary to bring these coordinate differences into the desired numerical range by applying a scaling factor to the coordinate differences in order to reduce them to a value range that may be applied to the polynomial formulae below without introducing numerical precision errors:
1084
1085U = mS.(XS - XS0)
1086V = mS.(YS - YS0)
1087
1088where
1089XS , YS  are coordinates in the source CRS,
1090XS0 , YS0 are coordinates of the evaluation point in the source CRS,
1091mS is the scaling factor applied the coordinate differences in the source CRS.
1092
1093The normalised coordinates U and V of the point whose coordinates are to be transformed are used as input to the polynomial transformation formula. In order to control the numerical range of the polynomial coefficients An and Bn the output coordinate differences dX and dY are multiplied by a scaling factor, mT.
1094
1095mT.dX = A0 + A1.U + A2.V + A3.U^2 + A4.U.V + A5.V^2 + A6.U^3 + A7.U^2.V + A8.U.V^2 + A9.V^3
1096            + A10.U^4 + A11.U^3.V + A12.U^2.V^2 + A13.U.V^3 + A14.V^4
1097            + A15.U^5 + A16.U^4.V + A17.U^3.V^2 + A18.U^2.V^3 + A19.U.V^4 + A20.V^5
1098            + A21.U^6 + A22.U^5.V + A23.U^4.V^2 + A24.U^3.V^3 + A25.U^2.V^4 + A26.U.V^5 + A27.V^6
1099
1100mT.dY = B0 + B1.U + B2.V + B3.U^2 + B4.U.V + B5.V^2 + B6.U^3 + B7.U^2.V + B8.U.V^2 + B9.V^3
1101            + B10.U^4 + B11.U^3.V + B12.U^2.V^2 + B13.U.V^3 + B14.V^4
1102            + B15.U^5 + B16.U^4.V + B17.U^3.V^2 + B18.U^2.V^3 + B19.U.V^4 + B20.V^5
1103            + B21.U^6 + B22.U^5.V + B23.U^4.V^2 + B24.U^3.V^3 + B25.U^2.V^4 + B26.U.V^5 + B27.V^6
1104
1105from which dX and dY are evaluated. These will be in the units of the target CRS.
1106
1107The polynomial coefficients are given as parameters of the form Aumvn and Bumvn, where m is the power to which U is raised and n is the power to which V is raised. For example, A17 is represented as coordinate operation parameter Au3v2.
1108
1109The relationship between the two CRSs can now be written as follows:
1110
1111        (XT - XT0) = (XS – XS0) + d
1112(YT - YT0) = (YS – YS0) + dY
1113or
1114        XT = XS – XS0  + XT0 + d
1115YT = YS – YS0 + YT0 + dY
1116
1117where:
1118XT, YT are coordinates in the target CRS,
1119XS, YS are coordinates in the source CRS,
1120XS0, YS0 are coordinates of the evaluation point in the source CRS,
1121XT , YT0 are coordinates of the evaluation point in the target CRS,
1122dX, dY are derived through the scaled polynomial formulas.",(none),,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-12-21,,0
11239649,Reversible polynomial of degree 2,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1124
1125See method code 9645 for description of general polynomial formula.
1126
1127A general polynomial transformation is reversible only when the following conditions are met.
11281. The co-ordinates of source and target evaluation point are (numerically) the same.
11292. The unit of measure of the coordinate differences in source and target coordinate reference system are the same.
11303. The scaling factors applied to source and target coordinate differences are the same.
11314. The spatial variation of the differences between the coordinate reference systems around any given location is sufficiently small.
1132
1133Clarification on conditions for polynomial reversibility:
1134Regarding 1 and 2 -     In the reverse transformation the roles of the source and target coordinate reference systems are reversed.  Consequently, the co-ordinates of the evaluation point in the source coordinate reference system become those in the target coordinate reference system in the reverse transformation. Usage of the same transformation parameters for the reverse transformation will therefore only be valid if the evaluation point coordinates are numerically the same in source and target coordinate reference system and in the same units.  That is, XS0 = XT0 = X0 and YS0 = YT0 = Y0.
1135Re 3 - The same holds for the scaling factors of the source and target coordinate differences and for the units of measure of the coordinate differences. That is, mS = mT = m.
1136Re 4 -  If conditions 1, 2 and 3 are all satisfied it then may be possible to use the forward polynomial algorithm with the forward parameters for the reverse transformation. This is the case if the spatial variations in dX and dY around any given location are sufficiently constant.  The signs of the polynomial coefficients are then reversed but the scaling factor and the evaluation point coordinates retain their signs. If these spatial variations in dX and dY are too large, for the reverse transformation iteration would be necessary.   It is therefore not the algorithm that determines whether a single step solution is sufficient or whether iteration is required, but the desired accuracy combined with the degree of spatial variability of dX and dY.
1137
1138An example of a reversible polynomial is transformation is ED50 to ED87 (1) for the North Sea.  The suitability of this transformation to be described by a reversible polynomial can easily be explained. In the first place both source and target coordinate reference systems are of type geographic 2D. The typical difference in coordinate values between ED50 and ED87 is in the order of 2 metres (approximately 10E-6 degrees) in the area of application. The polynomial functions are evaluated about central points with coordinates of 55 deg N, 0 deg E in both coordinate reference systems. The reduced coordinate differences (in degrees) are used as input parameters to the polynomial functions. The output coordinate differences are corrections to the input coordinate offsets of about 10E-6 degrees. This difference of several orders of magnitude between input and output values is the property that makes a polynomial function reversible in practice (although not in a formal mathematical sense).
1139
1140The error made by the polynomial approximation formulas in calculating the reverse correction is of the same order of magnitude as the ratio of output versus input:
1141(output error / input error) = (        output valu/ input value) which is approximately 10E-6
1142
1143As long as the input values (the coordinate offsets from the evaluation point) are orders of magnitude larger than the output (the corrections), and provided the coefficients are used with changed signs, the polynomial transformation may be considered to be reversible.","See Reversible polynomial of degree 4, code 9651, for general methodology.",Reversibility is subject to constraints.  See Guidance Note 7 for conditions and clarification.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-12-21,,0
11449650,Reversible polynomial of degree 3,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1145
1146See method code 9646 for description of general polynomial formula.
1147
1148A general polynomial transformation is reversible only when the following conditions are met.
11491. The co-ordinates of source and target evaluation point are (numerically) the same.
11502. The unit of measure of the coordinate differences in source and target coordinate reference system are the same.
11513. The scaling factors applied to source and target coordinate differences are the same.
11524. The spatial variation of the differences between the coordinate reference systems around any given location is sufficiently small.
1153
1154Clarification on conditions for polynomial reversibility:
1155Regarding 1 and 2 -     In the reverse transformation the roles of the source and target coordinate reference systems are reversed.  Consequently, the co-ordinates of the evaluation point in the source coordinate reference system become those in the target coordinate reference system in the reverse transformation. Usage of the same transformation parameters for the reverse transformation will therefore only be valid if the evaluation point coordinates are numerically the same in source and target coordinate reference system and in the same units.  That is, XS0 = XT0 = X0 and YS0 = YT0 = Y0.
1156Re 3 - The same holds for the scaling factors of the source and target coordinate differences and for the units of measure of the coordinate differences. That is, mS = mT = m.
1157Re 4 -  If conditions 1, 2 and 3 are all satisfied it then may be possible to use the forward polynomial algorithm with the forward parameters for the reverse transformation. This is the case if the spatial variations in dX and dY around any given location are sufficiently constant.  The signs of the polynomial coefficients are then reversed but the scaling factor and the evaluation point coordinates retain their signs. If these spatial variations in dX and dY are too large, for the reverse transformation iteration would be necessary.   It is therefore not the algorithm that determines whether a single step solution is sufficient or whether iteration is required, but the desired accuracy combined with the degree of spatial variability of dX and dY.
1158
1159An example of a reversible polynomial is transformation is ED50 to ED87 (1) for the North Sea.  The suitability of this transformation to be described by a reversible polynomial can easily be explained. In the first place both source and target coordinate reference systems are of type geographic 2D. The typical difference in coordinate values between ED50 and ED87 is in the order of 2 metres (approximately 10E-6 degrees) in the area of application. The polynomial functions are evaluated about central points with coordinates of 55 deg N, 0 deg E in both coordinate reference systems. The reduced coordinate differences (in degrees) are used as input parameters to the polynomial functions. The output coordinate differences are corrections to the input coordinate offsets of about 10E-6 degrees. This difference of several orders of magnitude between input and output values is the property that makes a polynomial function reversible in practice (although not in a formal mathematical sense).
1160
1161The error made by the polynomial approximation formulas in calculating the reverse correction is of the same order of magnitude as the ratio of output versus input:
1162(output error / input error) = (        output valu/ input value) which is approximately 10E-6
1163
1164As long as the input values (the coordinate offsets from the evaluation point) are orders of magnitude larger than the output (the corrections), and provided the coefficients are used with changed signs, the polynomial transformation may be considered to be reversible.","See Reversible polynomial of degree 4, code 9651, for general methodology.",Reversibility is subject to constraints.  See Guidance Note 7 for conditions and clarification.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-12-21,,0
11659651,Reversible polynomial of degree 4,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1166
1167See method code 9647 for description of general polynomial formula.
1168
1169A general polynomial transformation is reversible only when the following conditions are met.
11701. The co-ordinates of source and target evaluation point are (numerically) the same.
11712. The unit of measure of the coordinate differences in source and target coordinate reference system are the same.
11723. The scaling factors applied to source and target coordinate differences are the same.
11734. The spatial variation of the differences between the coordinate reference systems around any given location is sufficiently small.
1174
1175Clarification on conditions for polynomial reversibility:
1176Regarding 1 and 2 -     In the reverse transformation the roles of the source and target coordinate reference systems are reversed.  Consequently, the co-ordinates of the evaluation point in the source coordinate reference system become those in the target coordinate reference system in the reverse transformation. Usage of the same transformation parameters for the reverse transformation will therefore only be valid if the evaluation point coordinates are numerically the same in source and target coordinate reference system and in the same units.  That is, XS0 = XT0 = X0 and YS0 = YT0 = Y0.
1177Re 3 - The same holds for the scaling factors of the source and target coordinate differences and for the units of measure of the coordinate differences. That is, mS = mT = m.
1178Re 4 -  If conditions 1, 2 and 3 are all satisfied it then may be possible to use the forward polynomial algorithm with the forward parameters for the reverse transformation. This is the case if the spatial variations in dX and dY around any given location are sufficiently constant.  The signs of the polynomial coefficients are then reversed but the scaling factor and the evaluation point coordinates retain their signs. If these spatial variations in dX and dY are too large, for the reverse transformation iteration would be necessary.   It is therefore not the algorithm that determines whether a single step solution is sufficient or whether iteration is required, but the desired accuracy combined with the degree of spatial variability of dX and dY.
1179
1180An example of a reversible polynomial is transformation is ED50 to ED87 (1) for the North Sea.  The suitability of this transformation to be described by a reversible polynomial can easily be explained. In the first place both source and target coordinate reference systems are of type geographic 2D. The typical difference in coordinate values between ED50 and ED87 is in the order of 2 metres (approximately 10E-6 degrees) in the area of application. The polynomial functions are evaluated about central points with coordinates of 55 deg N, 0 deg E in both coordinate reference systems. The reduced coordinate differences (in degrees) are used as input parameters to the polynomial functions. The output coordinate differences are corrections to the input coordinate offsets of about 10E-6 degrees. This difference of several orders of magnitude between input and output values is the property that makes a polynomial function reversible in practice (although not in a formal mathematical sense).
1181
1182The error made by the polynomial approximation formulas in calculating the reverse correction is of the same order of magnitude as the ratio of output versus input:
1183(output error / input error) = (        output valu/ input value) which is approximately 10E-6
1184
1185As long as the input values (the coordinate offsets from the evaluation point) are orders of magnitude larger than the output (the corrections), and provided the coefficients are used with changed signs, the polynomial transformation may be considered to be reversible.","For geodetic transformation ED50 to ED87 (1)
1186
1187Offset unit:  degree
1188Ordinate 1 of evaluation point X0  =   55° 00' 00.000""N  = +55 degrees
1189Ordinate 2 of evaluation point Y0  =     0° 00' 00.000""E   =   +0 degrees
1190
1191Parameters:
1192A0 = -5.56098E-06   A1 = -1.55391E-06   ...   A14 = -4.01383E-09
1193B0 = +1.48944E-05   B2 = +2.68191E-05  ...   B14 = +7.62236E-09
1194
1195Forward calculation for:
1196ED50 Latitude     = Xs =52* 30’30""N   =     +52.508333333 degrees
1197ED50 Longitude  = Ys =  2*E=      +2.0 degrees   
1198
1199U = XS - X0 =  * ED50 - X0  = 52.508333333 - 55.0 = -2.491666667 degrees
1200V = YS - Y0 =  * ED50 - Y0   = 2.0 - 0.0 = 2.0 degrees
1201
1202dX = A0 + A1.U + ... + A14.V4
1203      = -5.56098E-06 + (-1.55391E-06 * -2.491666667) + ... + (-4.01383E-09 * 2.0^4)
1204      = -3.12958E-06 degrees
1205
1206dY = B0 + B1.U + ... + B14.V4
1207      = +1.48944E-05 + (2.68191E-05 * -2.491666667) + ... + (7.62236E-09 * 2.0^4)
1208      = +9.80126E-06 degrees
1209
1210Then  ED87 Latitude  =   XT = XS + dX
1211                                  =  52.508333333 - 3.12958E-06   degrees
1212                                  = 52* 30’ 29.9887"" N
1213
1214ED87 Longitude  =   YT = YS + dY
1215                           = 2* 00’ 00.0353"" E
1216
1217
1218Reverse calculation for transformation ED50 to ED87 (1).
1219The transformation method for the ED50 to ED87 (1) transformation, 4th-order reversible polynomial, is reversible. The same formulas may be applied for the reverse calculation, but coefficients A0 through A14 and B0 through B14 are applied with reversal of their signs. Sign reversal is not applied to the coordinates of the evaluation point. Thus:
1220Ordinate 1 of evaluation point X0  =   55° 00' 00.000""N  = +55 degrees
1221Ordinate 2 of evaluation point Y0  =     0° 00' 00.000""E   =   +0 degrees
1222A0  = +5.56098E-06   A1 = +1.55391E-06   ...   A14 = +4.01383E-09
1223B0  = -1.48944E-05    B1 = -2.68191E-05    ...   B14 = -7.62236E-09
1224
1225Reverse calculation for:
1226ED87 Latitude     = XS = 52° 30’29.9887""N   =     +52.5083301944 degrees
1227ED87 Longitude  = YS =   2° 00’ 00.0353"" E   =     +2.0000098055 degrees   
1228
1229U = 52.5083301944 - 55.0 = -2.4916698056 degrees
1230V = 2.0000098055 - 0.0 = 2.0000098055 degrees
1231
1232dX = A0 + A1.U + ... + A14.V4
1233      = +5.56098E-06 + (1.55391E-06 * -2.491666667) + ... + (4.01383E-09 * 2.0000098055^4)
1234      = +3.12957E-06 degrees
1235
1236dY = B0 + B1.U + ... + B14.V4
1237      = -1.48944E-05 + (-2.68191E-05 * -2.491666667) + ... + (-7.62236E-09 * 2.0000098055^4)
1238      = -9.80124E-06 degrees
1239
1240Then ED50 Latitude  =   XT = XS + dX
1241                                 = 52.5083301944 + 3.12957E-06   degrees
1242                                 = 52° 30’ 30.000"" N
1243
1244ED50 Longitude  =   YT = YS + dY
1245                           = 2° 00’ 00.000"" E",Reversibility is subject to constraints.  See Guidance Note 7 for conditions and clarification.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-12-21,,0
12469652,Complex polynomial of degree 3,0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1247
1248The relationship between two projected coordinate reference systems may be approximated more elegantly by a single polynomial regression formula written in terms of complex numbers. The advantage is that the dependence between the ‘A’ and ‘B’ coefficients (for U and V) is taken into account in the formula, resulting in fewer coefficients for the same order polynomial. A third-order polynomial in complex numbers is used in Belgium.
1249
1250mT.(dX + i. dY) = (A1 + i. A2).(U + i.V) + (A3 + i. A4).(U + i.V)^2 + (A5 + i. A6).(U + i.V)^3
1251
1252where U = mS.(XS - XS0)
1253           V = mS.(YS - YS0)
1254and mS, mT are the scaling factors for the coordinate differences in the source and target coordinate reference systems.
1255
1256The polynomial to degree 4 can alternatively be expressed in matrix form.
1257
1258Then
1259XT  = XS - XS0 + XT0 + dX
1260YT  = YS - YS0 + YT0 + dY
1261
1262where
1263XT , YT      are coordinates in the target coordinate reference system,
1264XS , YS      are coordinates in the source coordinate reference system,
1265XS0 , YS0   are coordinates of the evaluation point in the source coordinate reference system,
1266XT0 , YT0   are coordinates of the evaluation point in the target coordinate reference system.
1267
1268Note that the zero order coefficients of the general polynomial, A0 and B0, have apparently disappeared.  In reality they are absorbed by the different coordinates of the source and of the target evaluation point, which in this case, are numerically very different because of the use of two different projected coordinate reference systems for source and target.
1269
1270The transformation parameter values (the coefficients) are not reversible.  For the reverse transformation a different set of parameter values are required, used within the same formulas as the forward direction.","For transformation Belge Lambert 72 to ED50 / UTM zone 31N,
1271
1272Eo1 = 0
1273No1 = 0
1274Eo2 = 449681.702
1275No2 = 5460505.326
1276A1 = -71.3747
1277A2 = 1858.8407
1278A3 = -5.4504
1279A4 = -16.9681
1280A5 = 4.0783
1281A6 = 0.2193
1282
1283For source coordinate system E1=200000  N1=100000, then
1284E2 = 647737.377  N2 = 5564124.227.",Coordinate pairs treated as complex numbers.  This exploits the correlation between the polynomial coefficients and leads to a smaller number of coefficients than the general polynomial of degree 3.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-12-21,,0
12859653,Complex polynomial of degree 4,0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1286
1287The relationship between two projected coordinate reference systems may be approximated more elegantly by a single polynomial regression formula written in terms of complex numbers. The advantage is that the dependence between the ‘A’ and ‘B’ coefficients (for U and V) is taken into account in the formula, resulting in fewer coefficients for the same order polynomial. A fourth-order polynomial in complex numbers is used in The Netherlands for transforming coordinates referenced to the Amersfoort / RD system to and from ED50 / UTM.
1288
1289mT.(dX + i. dY) = (A1 + i. A2).(U + i.V) + (A3 + i. A4).(U + i.V)^2 + (A5 + i. A6).(U + i.V)^3 + (A7 + i.A8).(U + i.V)^4
1290
1291where U = mS.(XS - XS0)
1292           V = mS.(YS - YS0)
1293and mS, mT are the scaling factors for the coordinate differences in the source and target coordinate reference systems.
1294
1295The polynomial to degree 4 can alternatively be expressed in matrix form.
1296
1297Then
1298XT  = XS - XS0 + XT0 + dX
1299YT  = YS - YS0 + YT0 + dY
1300
1301where
1302XT , YT      are coordinates in the target coordinate reference system,
1303XS , YS      are coordinates in the source coordinate reference system,
1304XS0 , YS0   are coordinates of the evaluation point in the source coordinate reference system,
1305XT0 , YT0   are coordinates of the evaluation point in the target coordinate reference system.
1306
1307Note that the zero order coefficients of the general polynomial, A0 and B0, have apparently disappeared.  In reality they are absorbed by the different coordinates of the source and of the target evaluation point, which in this case, are numerically very different because of the use of two different projected coordinate reference systems for source and target.
1308
1309The transformation parameter values (the coefficients) are not reversible.  For the reverse transformation a different set of parameter values are required, used within the same formulas as the forward direction.","For transformation RD / Netherlands New to ED50 / UTM zone 31N,
1310
1311Eo1 = 155000
1312No1 = 463000
1313Eo2 = 663395.607
1314No2 = 5781194.380
1315A1 = -51.681
1316A2 = 3290.525
1317A3 = 20.172
1318A4 = 1.133
1319A5 = 2.075
1320A6 = 0.251
1321A7 = 0.075
1322A8 = -0.012
1323
1324For source coordinate system E1=200000  N1=500000, then
1325E2 =707155.557  N2 = 5819663.128.",Coordinate pairs treated as complex numbers.  This exploits the correlation between the polynomial coefficients and leads to a smaller number of coefficients than the general polynomial of degree 4.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-12-21,,0
13269654,Reversible polynomial of degree 13,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1327
1328See method code 9648 for description of general polynomial formula.
1329
1330A general polynomial transformation is reversible only when the following conditions are met.
13311. The co-ordinates of source and target evaluation point are (numerically) the same.
13322. The unit of measure of the coordinate differences in source and target coordinate reference system are the same.
13333. The scaling factors applied to source and target coordinate differences are the same.
13344. The spatial variation of the differences between the coordinate reference systems around any given location is sufficiently small.
1335
1336Clarification on conditions for polynomial reversibility:
1337Regarding 1 and 2 -     In the reverse transformation the roles of the source and target coordinate reference systems are reversed.  Consequently, the co-ordinates of the evaluation point in the source coordinate reference system become those in the target coordinate reference system in the reverse transformation. Usage of the same transformation parameters for the reverse transformation will therefore only be valid if the evaluation point coordinates are numerically the same in source and target coordinate reference system and in the same units.  That is, XS0 = XT0 = X0 and YS0 = YT0 = Y0.
1338Re 3 - The same holds for the scaling factors of the source and target coordinate differences and for the units of measure of the coordinate differences. That is, mS = mT = m.
1339Re 4 -  If conditions 1, 2 and 3 are all satisfied it then may be possible to use the forward polynomial algorithm with the forward parameters for the reverse transformation. This is the case if the spatial variations in dX and dY around any given location are sufficiently constant.  The signs of the polynomial coefficients are then reversed but the scaling factor and the evaluation point coordinates retain their signs. If these spatial variations in dX and dY are too large, for the reverse transformation iteration would be necessary.   It is therefore not the algorithm that determines whether a single step solution is sufficient or whether iteration is required, but the desired accuracy combined with the degree of spatial variability of dX and dY.
1340
1341An example of a reversible polynomial is transformation is ED50 to ED87 (1) for the North Sea.  The suitability of this transformation to be described by a reversible polynomial can easily be explained. In the first place both source and target coordinate reference systems are of type geographic 2D. The typical difference in coordinate values between ED50 and ED87 is in the order of 2 metres (approximately 10E-6 degrees) in the area of application. The polynomial functions are evaluated about central points with coordinates of 55 deg N, 0 deg E in both coordinate reference systems. The reduced coordinate differences (in degrees) are used as input parameters to the polynomial functions. The output coordinate differences are corrections to the input coordinate offsets of about 10E-6 degrees. This difference of several orders of magnitude between input and output values is the property that makes a polynomial function reversible in practice (although not in a formal mathematical sense).
1342
1343The error made by the polynomial approximation formulas in calculating the reverse correction is of the same order of magnitude as the ratio of output versus input:
1344(output error / input error) = (        output valu/ input value) which is approximately 10E-6
1345
1346As long as the input values (the coordinate offsets from the evaluation point) are orders of magnitude larger than the output (the corrections), and provided the coefficients are used with changed signs, the polynomial transformation may be considered to be reversible.","See Reversible polynomial of degree 4, code 9651, for general methodology.",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2003-09-22,,0
13479655,France geocentric interpolation,1,The transformation is made in the geocentric domain using the geocentric translations method (code 9603). However the translation parameter values are derived by bilinear interpolation in a gridded data set. The arguments in accessing the grid are geodetic latitude and longitude of the source coordinate reference system. The method is reversible but the interpolation is iterative In the reverse direction.,See information source.,,"IGN document NTG_88.pdf, ""Grille de parametres de transformation de coordonnees"". http://www.ign.fr",EPSG,2004-03-15,,0
13489656,Cartesian Grid Offsets,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1349
1350Easting_T = Easting_S + easting_offset
1351Northing_T = Northingn_S + northing_offset.",(none),This transformation allows calculation of coordinates in the target system by adding the parameter value to the coordinate values of the point in the source system.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-14,,0
13529657,Vertical Offset and Slope,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1353
1354In Europe, national height systems are related to the pan-European height system through three transformation parameters and the formula:
1355
1356Ht = Hs + A + [IncLat * rhoO * (Lat – LatO)] + [IncLong * nuO * (Long – LongO) * cos(Lat)]
1357
1358where
1359Ht = gravity-related height value in the target vertical coordinate reference system.
1360Hs = gravity-related height value in the source vertical coordinate reference system.
1361A is the value of the vertical offset to be applied.
1362IncLat is the value in radians of the inclination parameter in the latitude domain, i.e. in the plane of the meridian, derived at an evaluation point with coordinates of LatO , LongO.
1363IncLon is the value of the inclination parameter in the longitude domain, i.e. perpendicular to the plane of the meridian.
1364rhoO is the radius of curvature of the meridian at latitude LatO, where rhoO = a(1 – e^2)/(1 – e^2 * sin^2(LatO))^1.5
1365nuO is the radius of curvature on the prime vertical (i.e. perpendicular to the meridian) at latitude LatO, wh          ere nuO = a /(1 – e^2 * sin^2(LatO))^0.5
1366Lat , Long are the horizontal coordinates of the point in the ETRS89 coordinate reference system, in radians.
1367LatO , LongO are the coordinates of the evaluation point in the ETRS89 coordinate reference system, in radians.
1368
1369The horizontal location of the point must always be given in ETRS89 terms. Care is required where compound coordinate reference systems are in use: if the horizontal coordinates of the point are known in the local CRS they must first be transformed to ETRS89 values. The method is reversible.","For coordinate transformation LN02 to EVRF2000 (1)
1370
1371Ordinate 1 of evaluation point: 46deg 55min N = 0.818850307     radians
1372Ordinate 2 of evaluation point: 8deg 11min E of Greenwich = 0.142826110         radians
1373Transformation Parameters:
1374A = -0.245m             
1375IncLat = -0.210""  = -0.000001018       radians
1376IncLong = -0.032""  = -0.000000155      radians
1377
1378Consider a point having a gravity-related height in the LN02 system (Hs) of 473.0m and with horizontal coordinates in the ETRS89 geographical coordinate reference system of:
1379ETRS89 latitude: 47deg 20 min N = 0.826122513   radians
1380ETRS89 longitude: 9 deg 40min E of Greenwich = 0.168715161      radians
1381                               
1382Then rhoO = 6369526.88 m               
1383IncLat term = -0.047 m 
1384nuO = 6389555.64  m             
1385incLong term = -0.017 m
1386whence EVRF2000 height (Ht) = 473.0 +(-0.245) + (-0.047) + (-0.017) = 472.690 m.",This transformation allows calculation of height in the target system by applying the parameter values to the height value of the point in the source system.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-14,,0
13879658,VERTCON,1,See information source.,See information source.,Geodetic transformation operating on geographic coordinate differences by bi-linear interpolation.  Input expects longitudes to be positive west.,US National Geodetic Survey - http://www.ngs.noaa.gov,EPSG,2004-04-27,,0
13889659,Geographic3D to 2D conversion,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1389
1390The forward case is trivial. A 3-dimensional geographic coordinate reference system comprising of geodetic latitude, geodetic longitude and ellipsoidal height is converted to its 2-dimensional subset by the simple expedient of dropping the height.
1391
1392The reverse conversion, from 2D to 3D, is indeterminate. It is however a requirement when a geographic 2D coordinate reference system is to be transformed using a geocentric method which is 3-dimensional. In practice an artificial ellipsoidal height is created and appended to the geographic 2D coordinate reference system to create a geographic 3D coordinate reference system referenced to the same geodetic datum. The assumed ellipsoidal height is usually either set to the gravity-related height of a position in a compound coordinate reference system, or set to zero. As long as the height chosen is within a few kilometres of sea level, no error will be induced into the horizontal position resulting from the later geocentric transformation; the vertical coordinate will however be meaningless.",(none),This is a parameter-less conversion.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-27,,0
13939660,Geographic3D offsets,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1394
1395Lat_T = Lat_S + latitude_offset
1396Lon_T = Lon_S + longitude_offset
1397EllipsoidHeight_T = EllipsoidHeight_S + ellipsoid_height_offset.",(none),This transformation allows calculation of coordinates in the target system by adding the parameter value to the coordinate values of the point in the source system.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-27,,0
13989661,Geographic3D to GravityRelatedHeight (EGM),0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1399
1400This is a complex, multi-step transformation, involving the application of a geoid height difference interpolated at a point in a ""geoid model"". The geoid model should be available as a regular grid of latitude and longitude with the height of the geoid above the ellipsoid at each grid node. Only the height is affected by this transformation; the geodetic latitude and longitude are not.
1401
1402The transformation involves the following sequence of steps:
1403·  Selection of a subset of the geoid file covering the extent of the points to be transformed.
1404·  If the geoid file is not based on the source or target CRS, it needs to be transformed first. This involves transformation of the chosen subset of the geoid file from its orignal Geographic 3D CRS to the Geographic 3D CRS that is the source or the target of this transformation.
1405·  Calculation of the height of the geoid above the ellipsoid (""geoid undulation"") at the relevant point(s). This is achieved through a bi-linear interpolation of the geoid undulation, using the latitude and longitude to locate the point in the sub-grid.  This step results in the height of the geoid above the ellipsoid (N) of the Geographic 3D CRS, whether source or target.
1406·  At each point, the application of the calculated geoid undulation to the height to be transformed.
1407
1408H=h-N for Geographic3D to Geographic2D+GravityRelatedHeight
1409
1410h=H+N for Geographic2D+GravityRelatedHeight to Geographic3D
1411
1412where h = the ellipsoidal height (height above the ellipsoid in a geographic 3D CRS)
1413and H = the Gravity-Related Height component of the compound CRS.",(none),"Transformation of the vertical component of a Geographic 3D CRS to a Vertical CRS, or vice versa. The Geographic 3D and the Geographic 2D CRS must be based on the 3D.","EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-27,,0
14149662,Geographic3D to GravityRelatedHeight (Ausgeoid98),0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1415
1416This is a complex, multi-step transformation, involving the application of a geoid height difference interpolated at a point in a ""geoid model"". The geoid model should be available as a regular grid of latitude and longitude with the height of the geoid above the ellipsoid at each grid node. Only the height is affected by this transformation; the geodetic latitude and longitude are not.
1417
1418The transformation involves the following sequence of steps:
1419·  Selection of a subset of the geoid file covering the extent of the points to be transformed.
1420·  If the geoid file is not based on the source or target CRS, it needs to be transformed first. This involves transformation of the chosen subset of the geoid file from its orignal Geographic 3D CRS to the Geographic 3D CRS that is the source or the target of this transformation.
1421·  Calculation of the height of the geoid above the ellipsoid (""geoid undulation"") at the relevant point(s). This is achieved through a bi-linear interpolation of the geoid undulation, using the latitude and longitude to locate the point in the sub-grid.  This step results in the height of the geoid above the ellipsoid (N) of the Geographic 3D CRS, whether source or target.
1422·  At each point, the application of the calculated geoid undulation to the height to be transformed.
1423
1424H=h-N for Geographic3D to Geographic2D+GravityRelatedHeight
1425
1426h=H+N for Geographic2D+GravityRelatedHeight to Geographic3D
1427
1428where h = the ellipsoidal height (height above the ellipsoid in a geographic 3D CRS)
1429and H = the Gravity-Related Height component of the compound CRS.",(none),"Transformation of the vertical component of a Geographic 3D CRS to a Vertical CRS, or vice versa. The Geographic 3D and the Geographic 2D CRS must be based on the 3D.","EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-27,,0
14309663,Geographic3D to GravityRelatedHeight (OSGM02),0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1431
1432This is a complex, multi-step transformation, involving the application of a geoid height difference interpolated at a point in a ""geoid model"". The geoid model should be available as a regular grid of latitude and longitude with the height of the geoid above the ellipsoid at each grid node. Only the height is affected by this transformation; the geodetic latitude and longitude are not.
1433
1434The transformation involves the following sequence of steps:
1435·  Selection of a subset of the geoid file covering the extent of the points to be transformed.
1436·  If the geoid file is not based on the source or target CRS, it needs to be transformed first. This involves transformation of the chosen subset of the geoid file from its orignal Geographic 3D CRS to the Geographic 3D CRS that is the source or the target of this transformation.
1437·  Calculation of the height of the geoid above the ellipsoid (""geoid undulation"") at the relevant point(s). This is achieved through a bi-linear interpolation of the geoid undulation, using the latitude and longitude to locate the point in the sub-grid.  This step results in the height of the geoid above the ellipsoid (N) of the Geographic 3D CRS, whether source or target.
1438·  At each point, the application of the calculated geoid undulation to the height to be transformed.
1439
1440H=h-N for Geographic3D to Geographic2D+GravityRelatedHeight
1441
1442h=H+N for Geographic2D+GravityRelatedHeight to Geographic3D
1443
1444where h = the ellipsoidal height (height above the ellipsoid in a geographic 3D CRS)
1445and H = the Gravity-Related Height component of the compound CRS.",(none),"Transformation of the vertical component of a Geographic 3D CRS to a Vertical CRS, or vice versa. The Geographic 3D and the Geographic 2D CRS must be based on the 3D.","EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-27,,0
14469664,Geographic3D to GravityRelatedHeight (IGN),0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1447
1448This is a complex, multi-step transformation, involving the application of a geoid height difference interpolated at a point in a ""geoid model"". The geoid model should be available as a regular grid of latitude and longitude with the height of the geoid above the ellipsoid at each grid node. Only the height is affected by this transformation; the geodetic latitude and longitude are not.
1449
1450The transformation involves the following sequence of steps:
1451·  Selection of a subset of the geoid file covering the extent of the points to be transformed.
1452·  If the geoid file is not based on the source or target CRS, it needs to be transformed first. This involves transformation of the chosen subset of the geoid file from its orignal Geographic 3D CRS to the Geographic 3D CRS that is the source or the target of this transformation.
1453·  Calculation of the height of the geoid above the ellipsoid (""geoid undulation"") at the relevant point(s). This is achieved through a bi-linear interpolation of the geoid undulation, using the latitude and longitude to locate the point in the sub-grid.  This step results in the height of the geoid above the ellipsoid (N) of the Geographic 3D CRS, whether source or target.
1454·  At each point, the application of the calculated geoid undulation to the height to be transformed.
1455
1456H=h-N for Geographic3D to Geographic2D+GravityRelatedHeight
1457
1458h=H+N for Geographic2D+GravityRelatedHeight to Geographic3D
1459
1460where h = the ellipsoidal height (height above the ellipsoid in a geographic 3D CRS)
1461and H = the Gravity-Related Height component of the compound CRS.",(none),"Transformation of the vertical component of a Geographic 3D CRS to a Vertical CRS, or vice versa. The Geographic 3D and the Geographic 2D CRS must be based on the 3D.","EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-27,,0
14629665,Geographic3D to GravityRelatedHeight (US),0,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1463
1464This is a complex, multi-step transformation, involving the application of a geoid height difference interpolated at a point in a ""geoid model"". The geoid model should be available as a regular grid of latitude and longitude with the height of the geoid above the ellipsoid at each grid node. Only the height is affected by this transformation; the geodetic latitude and longitude are not.
1465
1466The transformation involves the following sequence of steps:
1467·  Selection of a subset of the geoid file covering the extent of the points to be transformed.
1468·  If the geoid file is not based on the source or target CRS, it needs to be transformed first. This involves transformation of the chosen subset of the geoid file from its orignal Geographic 3D CRS to the Geographic 3D CRS that is the source or the target of this transformation.
1469·  Calculation of the height of the geoid above the ellipsoid (""geoid undulation"") at the relevant point(s). This is achieved through a bi-linear interpolation of the geoid undulation, using the latitude and longitude to locate the point in the sub-grid.  This step results in the height of the geoid above the ellipsoid (N) of the Geographic 3D CRS, whether source or target.
1470·  At each point, the application of the calculated geoid undulation to the height to be transformed.
1471
1472H=h-N for Geographic3D to Geographic2D+GravityRelatedHeight
1473
1474h=H+N for Geographic2D+GravityRelatedHeight to Geographic3D
1475
1476where h = the ellipsoidal height (height above the ellipsoid in a geographic 3D CRS)
1477and H = the Gravity-Related Height component of the compound CRS.",(none),"Transformation of the vertical component of a Geographic 3D CRS to a Vertical CRS, or vice versa. The Geographic 3D and the Geographic 2D CRS must be based on the 3D.","EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-04-27,,0
14789666,UKOOA P6 seismic bin grid transformation,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1479
1480XT = XT0   +   XS .  k . dSX . cos q   +   YS .  k .  dSY  . sin q
1481YT = YT0   Â–   XS .  k .  dSX . sin q    +   YS .  k .  dSY  . cos q
1482
1483where:
1484
1485XT0 ,YT0  = the coordinates of the origin point of the source coordinate reference system, expressed in the target coordinate reference system;
1486dSX , dSY  = the length of one unit of the source  axis, expressed in units of the target axis, for the X axes and the Y- axes respectively;
1487k = point scale factor of the target coordinate reference system in a chosen reference point;
1488q  = the angle through which the source coordinate reference system axes must be rotated to coincide with the target coordinate refderence system axes (counter-clockwise is positive). Alternatively, the bearing (clockwise positive) of the source coordinate reference system Y-axis measured relative to target coordinate reference system north.","This example is given in the UKOOA P6/98 document. Source coordinate reference system: imaginary 3D seismic acquisition bin grid. The two axes are orthogonal, but the bin width on the I-axis (XS axis) is 25 metres, whilst the bin width on the J-axis (YS axis) is 12.5 metres. The origin of the grid has bin values of 1,1.
1489
1490The target coordinate reference system is a projected CRS (WGS 84 / UTM Zone 31N) upon which the origin of the bin grid is defined at E = 456781.0, N = 5836723.0.  The projected coordinate reference system point scale factor at the bin grid origin is 0.99984.
1491
1492In the map grid (target CRS), the bearing of the bin grid (source CRS) I and J axes are 110deg and 20deg respectively.  Thus the angle through which the bin grid axes need to be rotated to coincide with the map grid axes is +20 degrees.
1493
1494The transformation parameter values are:
1495
1496Parameter                                       Parameter value
1497Bin grid origin                                         1
1498Bin grid origin                                         1
1499Bin grid origin Easting                         456781.00 m
1500Bin grid origin Northing                    5836723.00 m
1501Scale factor of bin grid                                0.99984
1502Bin Width on I-axis                             25 m
1503Bin Width on J-axis                             12.5 m
1504Map grid bearing of bin grid J-axis     20 deg
1505Bin node increment on I-axis            1
1506Bin node increment on J-axis            1
1507
1508
1509Forward calculation for centre of bin with coordinates: I = 300, J = 247:
1510XT = Easting   = XTO   +   [(XS – XSO) * cos q * k * MX / IncSX]  +  [(YS – YSO) * sin q * k * MY / IncSY]
1511= 456781.000 + 7023.078 + 1051.544
1512= 464855.62 m.
1513
1514YT = Northing = YTO   Â–   [(XS – XSO) * sin q * k * MX / IncSX]   +  [(YS – YSO) * cos q * k * MY / IncSY]
1515= 5836723.000 - 2556.192 + 2889.092
1516= 5837055.90 m.
1517
1518Reverse calculation for this point 464 855.62mE, 5 837 055.90mN:
1519XS = {[( XT  – XTO) * cos q  –  (YT – YTO) * sin q ] * [IncSX  / (k * MX)]} + XSO
1520= 300 bins,
1521
1522YS = {[(XT   Â– XTO) * sin q   +  (YT – YTO) * cos q] * [IncSY  / (k * MY)]} + YSO
1523= 247 bins",,"UKOOA Data Exchange Format P6/98, Definition of 3D Seismic Binning Grids, revision 3, May 2000.",EPSG,2005-08-25,,0
15249801,Lambert Conic Conformal (1SP),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1525
1526To derive the projected Easting and Northing coordinates of a point with geographical coordinates (lat,lon) the formulas for the one standard parallel case are:
1527
1528E = FE + r sin(theta)
1529N = FN + r0 - r cos(theta)
1530where
1531n = sin lat0
1532r = a F t^n k0     for r0, and r
1533m = cos(lat)/(1 - e^2 sin^2(lat))^0.5     for m0, lat0, and m2, lat2 where lat1 and lat2 are the latitudes of the standard parallels.
1534t  = tan(pi/4 - lat/2)/[(1 - e sin(lat))/(1 + e sin(lat))]^(e/2)   for t0 and t using lat0 and lat respectively.
1535F = m0/(n  t1^n)
1536theta = n(lon - lon0)
1537
1538The reverse formulas to derive the latitude and longitude of a point from its Easting and Northing values are:
1539
1540lat = pi/2 - 2arctan{t'[(1 - esin(lat))/(1 + esin(lat))]^(e/2)}
1541lon = theta'/n +lon0
1542where
1543theta' = arctan[(E - FE)/{r0 -(N - FN)}]
1544r' = +/-[(E - FE)^2 + {r0 - (N - FN)}^2]^0.5  taking the sign of n
1545t' = (r'/(a k0 F))^(1/n)
1546and n, F, and rF are derived as for the forward calculation.","For Projected Coordinate System JAD69 / Jamaica National Grid
1547
1548Parameters:
1549Ellipsoid:  Clarke 1866, a = 6378206.400 m., 1/f = 294.97870
1550                                   then  e = 0.08227185 and e^2 = 0.00676866
1551
1552Latitude Natural Origin         18°00'00""N  =  0.31415927 rad
1553Longitude Natural Origin     77°00'00""W = -1.34390352 rad
1554Scale factor at origin            1.000000
1555False Eastings  FE               250000.00 m
1556False Northings FN              150000.00 m
1557
1558Forward calculation for:
1559Latitude:     17°55'55.80""N  =  0.31297535 rad
1560Longitude:  76°56'37.26""W = -1.34292061 rad
1561first gives
1562m0    =  0.95136402        t0 =  0.72806411
1563F       =  3.39591092        n  =  0.30901699
1564r        =  19643955.26     r0  =  19636447.86
1565theta =  0.00030374        t   =  0.728965259
1566
1567Then Easting E   =     255966.58 m
1568         Northing N =      142493.51 m
1569
1570Reverse calculation for the same easting and northing first gives
1571
1572theta' =  0.000303736
1573t'        =  0.728965259
1574m0     =  0.95136402
1575r'        =  19643955.26
1576
1577Then Latitude     = 17°55'55.800""N
1578         Longitude  = 76°56'37.260""W",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2001-06-05,2001.08,0
15799802,Lambert Conic Conformal (2SP),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1580
1581To derive the projected Easting and Northing coordinates of a point with geographical coordinates (lat,lon) the formulas for the one standard parallel case are:
1582
1583E = EF + r sin(theta)
1584N = NF + rF - r cos(theta)
1585where
1586m = cos(lat)/(1 - e^2 sin^2(lat))^0.5     for m1, lat1, and m2, lat2 where lat1 and lat2 are the latitudes of the standard parallels.
1587t  = tan(pi/4 - lat/2)/[(1 - e sin(lat))/(1 + e sin(lat))]^(e/2)   for t1, t2, tF and t using lat1, lat2, latF and lat respectively.
1588n = (loge(m1) - loge(m2))/(loge(t1) - loge(t2))
1589F = m1/(n  t1^n)
1590r =  a F t^n         for rF and r, where rF is the radius of the parallel of latitude of the false origin.
1591theta = n(lon - lon0)
1592
1593The reverse formulas to derive the latitude and longitude of a point from its Easting and Northing values are:
1594
1595lat = pi/2 - 2arctan{t'[(1 - esin(lat))/(1 + esin(lat))]^(e/2)}
1596lon = theta'/n +lon0
1597where
1598r' = +/-[(E - EF)^2 + {rF - (N - NF)}^2]^0.5 , taking the sign of n
1599t' = (r'/(aF))^(1/n)
1600theta' = arctan [(E- EF)/(rF - (N- NF))]
1601and n, F, and rF are derived as for the forward calculation.","For Projected Coordinate System NAD27 / Texas South Central
1602
1603Parameters:
1604Ellipsoid  Clarke 1866, a = 6378206.400 metres = 20925832.16 US survey feet
1605                                   1/f = 294.97870
1606then e = 0.08227185 and e^2 = 0.00676866
1607
1608First Standard Parallel          28°23'00""N  =   0.49538262 rad
1609Second Standard Parallel    30°17'00""N  =   0.52854388 rad
1610Latitude False Origin            27°50'00""N  =   0.48578331 rad
1611Longitude False Origin         99°00'00""W = -1.72787596 rad
1612Easting at false origin           2000000.00  US survey feet
1613Northing at false origin          0.00  US survey feet
1614
1615Forward calculation for:
1616Latitude       28°30'00.00""N  =  0.49741884 rad
1617Longitude    96°00'00.00""W = -1.67551608 rad
1618
1619first gives :
1620m1    = 0.88046050      m2 = 0.86428642
1621t        = 0.59686306      tF  = 0.60475101
1622t1      = 0.59823957      t2 = 0.57602212
1623n       = 0.48991263       F = 2.31154807
1624r        = 37565039.86    rF = 37807441.20
1625theta = 0.02565177
1626
1627Then Easting E =      2963503.91 US survey feet
1628         Northing N =      254759.80 US survey feet
1629
1630Reverse calculation for same easting and northing first gives:
1631theta' = 0.025651765     r' = 37565039.86
1632t'        = 0.59686306
1633
1634Then Latitude     = 28°30'00.000""N
1635         Longitude   = 96°00'00.000""W",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2001-06-05,99.281  2001.08,0
16369803,Lambert Conic Conformal (2SP Belgium),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1637
1638For the Lambert Conic Conformal (2 SP Belgium), the formulas for the regular two standard parallel case (coordinate operation method code 9802) are used except for:
1639
1640Easting, E = EF + r sin (theta - alpha)
1641Northing, N = NF + rF - r cos (theta - alpha)
1642
1643and for the reverse formulas
1644lon = ((theta' + alpha)/n) +lon0
1645where alpha = 29.2985 seconds.","For Projected Coordinate System Belge 1972 / Belge Lambert 72
1646
1647Parameters:
1648Ellipsoid  International 1924,  a = 6378388 metres
1649                                              1/f = 297
1650then e = 0.08199189 and e^2 = 0.006722670
1651
1652First Standard Parallel        49°50'00""N       =   0.86975574 rad
1653Second Standard Parallel  51°10'00""N       =   0.89302680 rad
1654Latitude False Origin          90°00'00""N       =   1.57079633 rad
1655Longitude False Origin         4°21'24.983""E = 0.07604294 rad
1656Easting at false origin EF        150000.01  metres
1657Northing at false origin NF    5400088.44  metres
1658
1659Forward calculation for:
1660Latitude        50°40'46.461""N  =  0.88452540 rad
1661Longitude       5°48'26.533""E   = 0.10135773 rad
1662
1663first gives :
1664m1     = 0.64628304         m2 = 0.62834001
1665t        = 0.59686306          tF  = 0.00000000
1666t1      = 0.36750382           t2 = 0.35433583
1667n       = 0.77164219            F = 1.81329763
1668r        = 37565039.86         rF = 0.00
1669alpha = 0.00014204     theta = 0.01953396
1670
1671Then Easting E  =      251763.20 metres
1672         Northing N =      153034.13 metres
1673
1674Reverse calculation for same easting and northing first gives:
1675theta' = 0.01939192      r' = 548041.03
1676t' = 0.35913403
1677Then Latitude   =    50°40'46.461""N
1678         Longitude =     5°48'26.533""E",In 2000 this modification was replaced through use of the regular Lambert Conic Conformal (2SP) method [9802] with appropriately modified parameter values.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,1999-04-22,99.281,0
16799804,Mercator (1SP),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1680
1681The formulas to derive projected Easting and Northing coordinates are:
1682
1683E = FE + a*k0(lon - lon0)             
1684N = FN + a*k0* ln{tan(pi/4 + lat/2)[(1 - esin(lat))/(1 + esin(lat))]^e/2} where symbols are as listed above and logarithms are natural.
1685
1686The reverse formulas to derive latitude and longitude from E and N values are:
1687
1688lat = chi + (esq/2 + 5e^4/24 + e^6/12 + 13e^8/360) sin(2chi)
1689+ (7e^4/48 + 29e^6/240 + 811e^8/11520) sin(4chi)
1690+ (7e^6/120 +  81e^8/1120) sin(6chi)  + (4279e^8/161280) sin(8chi)
1691
1692where chi = pi/2 - 2 arctan t
1693t = B^((FN-N)/(a*k0))
1694B = base of the natural logarithm, 2.7182818...
1695and  for the 2 SP Case, k0 is calculated as for the forward transformation above.
1696lon  =  ((E - FE)/(a*k0))  + lon0","For Projected Coordinate System Makassar / NEIEZ
1697
1698Parameters:
1699Ellipsoid   Bessel 1841  a = 6377397.155 m   1/f = 299.15281
1700then e = 0.08169683
1701
1702Latitude Natural Origin         00°00'00""N  = 0.0000000 rad
1703Longitude Natural Origin    110°00'00""E  = 1.91986218 rad
1704Scale factor ko                  0.997
1705False Eastings FE              3900000.00 m
1706False Northings FN              900000.00 m
1707
1708Forward calculation for:
1709Latitude            3°00'00.00""S   = -0.05235988 rad
1710Longitude     120°00'00.00""E   =  2.09439510 rad
1711gives
1712Easting  E   =      5009726.58 m
1713Northing N  =        569150.82 m
1714
1715Reverse calculation for same easting and northing first gives :
1716t    = 1.0534121
1717chi = -0.0520110
1718
1719Then Latitude     =   3°00'00.000""S
1720         Longitude  = 120°00'00.000""E",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-06-22,2001.08 2004.43,0
17219805,Mercator (2SP),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1722
1723The formulas to derive projected Easting and Northing coordinates are:
1724
1725For the two standard parallel case, k0 is first calculated from
1726
1727k0 = cos(latSP1)/(1 - e^2*sin^2(latSP1))^0.5
1728 
1729where latSP1 is the absolute value of the first standard parallel (i.e. positive). 
1730
1731Then, for both one and two standard parallel cases,
1732
1733E = FE + a*k0(lon - lon0)             
1734N = FN + a*k0* ln{tan(pi/4 + lat/2)[(1 - esin(lat))/(1 + esin(lat))]^e/2} where symbols are as listed above and logarithms are natural.
1735
1736The reverse formulas to derive latitude and longitude from E and N values are:
1737
1738lat = chi + (esq/2 + 5e^4/24 + e^6/12 + 13e^8/360) sin(2chi)
1739+ (7e^4/48 + 29e^6/240 + 811e^8/11520) sin(4chi)
1740+ (7e^6/120 +  81e^8/1120) sin(6chi)  + (4279e^8/161280) sin(8chi)
1741
1742where chi = pi/2 - 2 arctan t
1743t = B^((FN-N)/a*k0)
1744B = base of the natural logarithm, 2.7182818...
1745and  for the 2 SP Case, k0 is calculated as for the forward transformation above.
1746lon  =  ((E - FE)/a*k0)  + lon0","For Projected Coordinate System Pulkovo 1942 / Mercator Caspian Sea
1747
1748Parameters:
1749Ellipsoid  Krassowski 1940   a = 6378245.00m   1/f = 298.300
1750then e = 0.08181333 and e^2 = 0.00669342
1751
1752Latitude first SP                             42°00'00""N = 0.73303829 rad
1753Longitude Natural Origin                51°00'00""E = 0.89011792 rad
1754False Eastings FE                          0.00 m
1755False Northings (at equator) FN     0.00 m
1756 
1757then natural origin at latitude of 0°N has scale factor k0=  0.744260894
1758
1759Forward calculation for:
1760Latitude        53°00'00.00""N = 0.9250245 rad
1761Longitude     53°00'00.00""E  = 0.9250245 rad
1762
1763gives Easting E   =     165704.29 m
1764          Northing N =   5171848.07 m
1765
1766Reverse calculation for same easting and northing first gives :
1767t = 0.336391288    chi = 0.921795958
1768
1769Then Latitude     =  53°00'00.000""N
1770          Longitude  =  53°00'00.000""E",Used for most nautical charts.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2006-07-30,2004.32 2004.43 2006.,0
17719806,Cassini-Soldner,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1772
1773The formulas to derive projected Easting and Northing coordinates are:
1774
1775Easting E = FE + nu[A - TA^3/6 -(8 - T + 8C)TA^5/120]
1776
1777Northing N = FN + M - M0 + nu*tan(lat)*[A^2/2 + (5 - T + 6C)A^4/24]
1778
1779where A = (lon - lon0)cos(lat)
1780T = tan^2(lat)
1781C = e2 cos2*/(1 - e2)        nu = a /(1 - esq*sin^2(lat))^0.5
1782and M, the distance along the meridian from equator to latitude lat, is given by
1783M = a[(1 - e^2/4 - 3e^4/64 - 5e^6/256 -....)*lat - (3e^2/8 + 3e^4/32 + 45e^6/1024 +....)sin(2*lat) + (15e^4/256 + 45e^6/1024 +.....)sin(4*lat) - (35e^6/3072 + ....)sin(6*lat) + .....]
1784with lat in radians.
1785
1786M0 is the value of M calculated for the latitude of the chosen origin. This may not necessarily be chosen as the equator.
1787
1788To compute latitude and longitude from Easting and Northing the reverse formulas are:
1789lat = lat1 - (nu1tan(lat1)/rho1)[D2/2 - (1 + 3*T1)D^4/24]
1790lon =  lon0 + [D - T1*D^3/3 + (1 + 3*T1)T1*D^5/15]/cos(lat1)
1791
1792where lat1 is the latitude of the point on the central meridian which has the same Northing as the point whose coordinates are sought, and is found from:
1793lat1 = mu1 + (3*e1/2 - 27*e1^3/32 +.....)sin(2*mu1) + (21*e1^2/16 - 55*e1^4/32 + ....)sin(4*mu1)+ (151*e1^3/96 +.....)sin(6*mu1) + (1097*e1^4/512 - ....)sin(8*mu1) + ......
1794where
1795e1 = [1- (1 - esq)^0.5]/[1 + (1 - esq)^0.5]
1796mu1 = M1/[a(1 - esq/4 - 3e^4/64 - 5e^6/256 - ....)]
1797M1 = M0 + (N - FN)
1798T1 = tan^2(lat1)
1799D = (E - FE)/nu1","For Projected Coordinate System Trinidad 1903 / Trinidad Grid
1800Parameters:
1801Ellipsoid   Clarke 1858     a = 20926348 ft    = 31706587.88 links
1802                                        b = 20855233 ft
1803
1804then 1/f = 294.97870 and e^2 = 0.00676866
1805
1806Latitude Natural Origin       10°26'30""N  =  0.182241463 rad
1807Longitude Natural Origin    61°20'00""W = -1.07046861 rad
1808False Eastings FE              430000.00 links
1809False Northings FN            325000.00 links
1810
1811Forward calculation for:
1812Latitude       10°00'00.00"" N = 0.17453293 rad
1813Longitude    62°00'00.00""W = -1.08210414 rad
1814
1815A = -0.01145876      C = 0.00662550
1816T = 0.03109120      M = 5496860.24    nu = 31709831.92     M0 = 5739691.12
1817
1818Then Easting E    =  66644.94 links
1819          Northing N =  82536.22 links
1820
1821Reverse calculation for same easting and northing first gives :
1822e1    =   0.00170207       D  =     -0.01145875
1823T1   = 0.03109544         M1 =      5497227.34
1824nu1  = 31709832.34       mu1 =    0.17367306
1825phi1 = 0.17454458         rho1 =    31501122.40
1826
1827
1828Then Latitude     = 10°00'00.000""N
1829         Longitude  =  62°00'00.000""W",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,1996-09-18,,0
18309807,Transverse Mercator,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1831
1832The formulas to derive the projected Easting and Northing coordinates are in the form of a series as follows:
1833
1834Easting, E =  FE + k0*nu[A + (1 - T + C)A^3/6 + (5 - 18T + T^2 + 72C - 58e'sq)A^5/120] 
1835
1836Northing, N =  FN + k0{M - M0 + nu*tan(lat)[A^2/2 + (5 - T + 9C + 4C^2)A^4/24 + (61 - 58T + T^2 + 600C - 330e'sq)A^6/720]}
1837where T = tan^2(lat)                nu = a /(1 - esq*sin^2(lat))^0.5
1838C = esq*cos^2(lat)/(1 - esq)
1839A = (lon - lon0)cos(lat), with lon and lon0 in radians.
1840M = a[(1 - esq/4 - 3e^4/64 - 5e^6/256 -....)lat - (3esq/8 + 3e^4/32 + 45e^6/1024+....)sin(2*lat) + (15e^4/256 + 45e^6/1024 +.....)sin(4*lat) - (35e^6/3072 + ....)sin(6*lat) + .....]
1841with lat in radians and M0 for lat0, the latitude of the origin, derived in the same way.
1842
1843The reverse formulas to convert Easting and Northing projected coordinates to latitude and longitude are:
1844
1845lat = lat1 - (nu1*tan(lat1)/rho1)[D^2/2 - (5 + 3*T1 + 10*C1 - 4*C1^2 - 9*e'^2)D^4/24 + (61 + 90*T1 + 298*C1 + 45*T1^2 - 252*e'^2 - 3*C1^2)D^6/720]
1846lon = lon0 + [D - (1 + 2*T1 + C1)D^3/6 + (5 - 2*C1 + 28*T1 - 3*C1^2 + 8*e'^2 + 24*T1^2)D^5/120] / cos(lat1)
1847where lat1 may be found as for the Cassini projection from:
1848
1849lat1 = mu1 + ((3*e1)/2 - 27*e1^3/32 +.....)sin(2*mu1) + (21*e1^2/16 -55*e1^4/32 + ....)sin(4*mu1)+ (151*e1^3/96 +.....)sin(6*mu1) + (1097*e1^4/512 - ....)sin(8*mu1) + ......
1850and where
1851nu1 = a /(1 - esq*sin^2(lat1))^0.5
1852rho1 = a(1 - esq)/(1 - esq*sin^2(lat1))^1.5
1853e1 = [1- (1 - esq)^0.5]/[1 + (1 - esq)^0.5]
1854mu1 = M1/[a(1 - esq/4 - 3e^4/64 - 5e^6/256 - ....)]
1855M1 = M0 + (N - FN)/k0
1856T1 = tan^2(lat1)
1857C1 = e'^2*cos^2(lat1)
1858D = (E - FE)/(nu1*k0), with nu1 = nu for lat1
1859
1860For areas south of the equator the value of latitude lat will be negative and the formulas above, to compute the E and N,  will automatically result in the correct values. Note that the false northings of the origin, if the equator, will need to be large to avoid negative northings and for the UTM projection is in fact 10,000,000m. Alternatively, as in the case of Argentina's Transverse Mercator (Gauss-Kruger) zones, the origin is at the south pole with a northings of zero. However each zone central meridian takes a false easting of 500000m prefixed by an identifying zone number. This ensures that instead of points in
1861different zones having the same eastings, every point in the country, irrespective of its projection zone, will have a unique set of projected system coordinates. Strict application of the above formulas, with south latitudes negative, will result in the derivation of the correct Eastings and Northings.
1862
1863Similarly, in applying the reverse formulas to determine a latitude south of the equator, a negative sign for lat results from a negative lat1 which in turn results from a negative M1.","For Projected Coordinate System OSGB 1936 / British National Grid
1864
1865Parameters:
1866Ellipsoid  Airy 1830  a = 6377563.396 m  1/f = 299.32496
1867then e'^2 = 0.00671534 and e^2 = 0.00667054
1868
1869Latitude Natural Origin         49°00'00""N   = 0.85521133 rad
1870Longitude Natural Origin        2°00'00""W  = -0.03490659 rad
1871Scale factor ko                     0.9996013                                                                                              False Eastings FE                 400000.00 m
1872False Northings FN              -100000.00 m
1873
1874Forward calculation for:
1875Latitude       50°30'00.00""N  = 0.88139127 rad
1876Longitude    00°30'00.00""E  = 0.00872665 rad
1877A  = 0.02775415       C = 0.00271699
1878T =  1.47160434       M = 5596050.46
1879M0 = 5429228.60     nu  = 6390266.03
1880
1881Then Easting E =        577274.99 m
1882          Northing N =       69740.50 m
1883
1884Reverse calculations for same easting and northing first gives :
1885e1 =    0.00167322      mu1 = 0.87939562
1886M1 = 5599036.80        nu1 = 6390275.88
1887lat1  = 0.88185987      D = 0.02775243
1888rho1 =6372980.21       C1 =  0.00271391
1889T1 = 1.47441726
1890
1891Then Latitude       = 50°30'00.000""N
1892         Longitude    = 00°30'00.000""E",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2007-02-19,2004.68 2007.029,0
18939808,Transverse Mercator (South Orientated),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1894
1895For the mapping of southern Africa a south oriented Transverse Mercator projection is used. Here the coordinate axes are called Westings and Southings and increment to the West and South from the origin respectively.  The standard Transverse Mercator formulas (coordinate operation method code 9807) need to be modified to cope with this arrangement with
1896
1897Westing, W = FE - k0 nu[A + (1 - T + C)A^3/6 + (5 - 18*T + T^2 + 72*C - 58*e'^2)A^5/120]
1898
1899Southing, S = FN - k0{M - M0 + nu*tan(lat)*[A^2/2 + (5 - T + 9*C + 4*C^2)A^4/24 + (61 - 58*T + T^2 + 600*C - 330*e'^2)A^6/720]}
1900
1901In these formulas the terms FE and FN retain their definition, i.e. in the Transverse Mercator (South Orientated) method they increase the Westing and Southing value at the natural origin. In this method they are effectively false westing (FW) and false southing (FS) respectively.
1902
1903For the reverse formulas, those for the standard Transverse Mercator above apply, with the exception that:
1904
1905M1 = M0 - (S - FN)/k0
1906and D = -(W - FE)/(nu1*k0), with nu1 = nu for lat1","See Transverse Mercator, code 9807, for general methodology.",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-07-31,2002.51,0
19079809,Oblique Stereographic,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
1908
1909Given the geodetic origin of the projection at the tangent point (lat0, lon0), the parameters defining the conformal sphere are:
1910
1911R= sqrt( rho0 * nu0)
1912n= {1 + [e^2 * cos^4(latC) / (1 - e^2)]}^0.5
1913c=  [(n+sin(lat0)) (1-sin(chi0))]/[(n-sin(lat0)) (1+sin(chi0))]
1914
1915where:
1916sin(chi0) = (w1-1)/(w1+1)
1917w1 = (S1.(S2)^e)^n
1918S1 = (1+sin(lat0))/(1-sin(lat0))
1919S2 = (1-e sin(lat0))/(1+e sin(lat0))
1920
1921The conformal latitude and longitude (chi0,lambda0) of the origin are then computed from :
1922
1923chi0 = asin[(w2-1)/(w2+1)]
1924
1925where S1 and S2 are as above and  w2 = c (S1(S2)^e)^n
1926 
1927lambda0  = lon0
1928
1929For any point with geodetic coordinates (lat, lon) the equivalent conformal latitude and longitude (chi, lambda) are computed from
1930lambda = n(lon-lambda0) + lambda0
1931chi = asin[(w-1)/(w+1)]
1932
1933where w = c (Sa (Sb)^e)^n
1934Sa = (1+sin(lat))/(1-sin(lat))
1935Sb = (1-e.sin(lat))/(1+e.sin(lat))
1936 
1937Then B = [1+sin(chi) sin(chi0) + cos(chi) cos(chi0) cos(lambda-lambda0)]
1938
1939N = FN + 2 R k0 [sin(chi) cos(chi0) - cos(chi) sin(chi0) cos(lambda-lambda0)] / B
1940
1941E = FE + 2 R k0 cos(chi) sin(lambda-lambda0) / B
1942
1943
1944The reverse formulae to compute the geodetic coordinates from the grid coordinates involves computing the conformal values, then the isometric latitude and finally the geodetic values.
1945
1946The parameters of the conformal sphere and conformal latitude and longitude at the origin are computed as above. Then for any point with Stereographic grid coordinates (E,N) :
1947
1948chi = chi0 + 2 atan[{(N-FN)-(E-FE) tan (j/2)} / (2 R k0)]
1949
1950lambda = j + 2 i + lambda0
1951
1952where g = 2 R k0 tan(pi/4 - chi0/2)
1953h = 4 R k0 tan(chi0) + g
1954i = atan[(E-FE) / {h+(N-FN)}]
1955j = atan[(E-FE) / (g-(N-FN)] - i
1956
1957Geodetic longitude lon = (lambda-lambda0 ) / n +  lambda0
1958
1959Isometric latitude psi = 0.5 ln [(1+ sin(chi)) / { c (1-  sin(chi))}] / n
1960
1961First approximation lat1 = 2 atan(e^psi)  - pi/2  where e=base of natural logarithms.
1962
1963psii = isometric latitude at lati
1964
1965where psii= ln[{tan(lati/2 + pi/4}  {(1-e sin(lati))/(1+e sin(lati))}^(e/2)]
1966 
1967Then iterate lat(i+1) = lati - ( psii - psi ) cos(lati) (1 -e^2 sin^2(lati)) / (1 - e^2)
1968
1969until the change in lat is sufficiently small.
1970
1971For Oblique Stereographic projections centred on points in the southern hemisphere,  the signs of E, N, lon0, lon,  must be reversed to be used in the equations and lat will be negative anyway as a southerly latitude.
1972
1973An alternative approach is given by Snyder, where, instead of defining a single conformal sphere at the origin point, the conformal latitude at each point on the ellipsoid is computed.  The conformal longitude is then always equivalent to the geodetic longitude.  This approach is a valid alternative to the above, but gives slightly different results away from the origin point. It is therefore considered by EPSG to be a different coordinate operation method to that described above.","For Projected Coordinate System RD / Netherlands New
1974
1975Parameters:
1976Ellipsoid   Bessel 1841    a = 6377397.155 m    1/f = 299.15281
1977then e = 0.08169683
1978
1979Latitude Natural Origin      52°09'22.178""N  = 0.910296727 rad
1980Longitude Natural Origin     5°23'15.500""E  =  0.094032038 rad
1981Scale factor k0                 0.9999079
1982False Eastings FE             155000.00 m
1983False Northings FN           463000.00 m
1984
1985Forward calculation for:
1986
1987Latitude    53°N = 0.925024504 rad
1988Longitude   6°E = 0.104719755 rad
1989
1990first gives the conformal sphere constants:
1991
1992rho0 = 6374588.71    nu0 = 6390710.613
1993R = 6382644.571    n = 1.000475857    c  = 1.007576465
1994
1995where S1 = 8.509582274  S2 = 0.878790173  w1 = 8.428769183
1996sin chi0 = 0.787883237
1997
1998w   = 8.492629457   chi0 = 0.909684757      D0 = d0
1999
2000for the point  chi  = 0.924394997    D = 0.104724841
2001
2002hence B = 1.999870665    N = 557057.739    E = 196105.283
2003
2004reverse calculation for the same Easting and Northing first gives:
2005
2006g = 4379954.188    h = 37197327.96   i = 0.001102255   j = 0.008488122
2007
2008then  D = 0.10472467  Longitude = 0.104719584 rad =  6 deg E
2009
2010chi  = 0.924394767    psi = 1.089495123
2011phi1 = 0.921804948       psi1 = 1.084170164
2012phi2 = 0.925031162       psi2 = 1.089506925
2013phi3 = 0.925024504       psi3 = 1.089495505
2014phi4 = 0.925024504
2015
2016Then Latitude      = 53°00'00.000""N
2017          Longitude   =   6°00'00.000""E","This is not the same as the projection method of the same name in USGS Professional Paper no. 1395, ""Map Projections - A Working Manual"" by John P. Snyder.","EPSG guidance note #7-2, http://www.epsg.org",EPSG,2006-03-31,99.811 2006.20,0
20189810,Polar Stereographic (variant A),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2019
2020For the forward conversion from latitude and longitude, for the south pole case
2021
2022E = FE + rho * sin(lon – lonO)
2023N = FN + rho * cos(lon – lonO)
2024where
2025t = tan(pi/4 + lat/2) / {[(1 + e sin(lat)) / (1 – e sin(lat))]^(e/2)}
2026rho = 2*a*ko*t / {[(1+e)^(1+e) (1–e)^(1–e)]^0.5}
2027
2028For the north pole case,
2029rho and E are found as for the south pole case but
2030t  = tan(pi/4 – lat/2) *  {[(1 + e sin(lat)) / (1 – e sin(lat))]^(e/2)}
2031N = FN – rho * cos(lon – lonO)
2032
2033For the reverse conversion from easting and northing to latitude and longitude,
2034lat = chi + (e^2/2 + 5e^4/24 + e^6/12 + 13e^8/360) sin(2 chi)
2035+ (7e^4/48 + 29e^6/240 + 811e^8/11520) sin(4 chi)
2036+ (7e^6/120 +  81e^8/1120) sin(6 chi)  + (4279e^8/161280) sin(8 chi)
2037
2038where rho'  = [(E-FE)^2  + (N – FN)^2]^0.5
2039t'   =rho' {[(1+e)^(1+e) * (1– e)^(1-e)]^0.5} / (2 a ko)
2040and for the south pole case
2041chi  = 2 atan(t' ) – pi/2
2042but for the north pole case
2043chi  =  pi/2 - 2 atan t'
2044
2045Then for for both north and south cases if E = FE, lon = lonO
2046else for the south pole case
2047lon = lonO + atan [(E – FE) / (N – FN)]
2048and for the north pole case
2049lon = lonO + atan [(E – FE) / –(N – FN)] = lonO + atan [(E – FE) / (FN – N)]","For Projected Coordinate Reference System: WGS 84 / UPS North
2050
2051Parameters:
2052Ellipsoid: WGS 84
2053a = 6378137.0 metre
20541/f = 298.2572236
2055then e = 0.081819191
2056
2057Latitude of natural origin (latO): 90°00'00.000""N =1.570796327 rad
2058Longitude of origin (longO): 0°00'00.000""E=0.0 rad
2059Scale factor at natural origin (ko): 0.994
2060False easting (FE) 2000000.00 metre
2061False northing (FN) 2000000.00 metre
2062
2063Forward calculation for:
2064Latitude (lat) =73°N =1.274090354 rad
2065Longitude (lon) =44°E =0.767944871 rad
2066
2067t  = 0.150412808
2068rho = 1900814.564
2069whence
2070E = 3320416.75 m
2071N =  632668.43 m
2072
2073Reverse calculation for the same Easting and Northing (3320416.75 E, 632668.43 N) first gives:
2074rho' = 1900814.566
2075t'  = 0.150412808
2076chi  = 1.2722090
2077
2078Then
2079Latitude (lat) = 73°00'00.000""N
2080Longitude (lon) = 44°00'00.000""E",Latitude of natural origin must be either 90 degrees or -90 degrees (or equivalent in alternative angle unit).,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2003-09-22,2003.22,0
20819811,New Zealand Map Grid,1,See information source.,See information source.,,New Zealand Department of Lands technical circular 1973/32,EPSG,1996-09-18,,0
20829812,Hotine Oblique Mercator,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2083
2084The following constants for the projection may be calculated :
2085
2086B = {1 + [esq * cos^4(latc) / (1 - esq )]}^0.5
2087A = a * B * kc *(1 - esq )^0.5 / ( 1 - esq * sin^2(latc))
2088t0 = tan(pi/4 - latc/2) / ((1 - e*sin(latc)) / (1 + e*sin(latc)))^(e/2)
2089D = B (1 - esq)^0.5  / (cos(latc) * ( 1 - esq*sin^2(latc))^0.5)
2090if D < 1 to avoid problems with computation of F make D^2  = 1
2091F = D + (D^2 - 1)^0.5  * SIGN(latc)
2092H = F*(t0)^B
2093G = (F - 1/F) / 2
2094gamma0 = asin(sin(alphac) / D)
2095lon0 = lonc - (asin(G*tan(gamma0))) / B
2096
2097 
2098Forward case: To compute (E,N) from a given (lat,lon) :
2099
2100t = tan(pi/4 - lat/2) / ((1 - e sin (lat)) / (1 + e sin (lat)))^(e/2)
2101Q = H / t^B
2102S = (Q - 1 / Q) / 2
2103T = (Q + 1 / Q) / 2
2104V = sin(B (lon - lon0))
2105U = (- V cos(gamma0) + S sin(gamma0)) / T
2106v = A ln((1 - U) / (1 + U)) / 2 B
2107u = A atan((S cos(gamma0) + V sin(gamma0)) / cos(B (lon - lon0 ))) / B
2108
2109The rectified skew co-ordinates are then derived from:
2110E = v cos(gammac) + u sin(gammac) + FE
2111N = u cos(gammac) - v sin(gammac) + FN
2112
2113Reverse case: Compute (lat,lon)  from a given (E,N)  :
2114
2115v’ = (E - FE) cos(gammac) - (N - FN) sin(gammac)
2116u’ = (N - FN) cos(gammac) + (E - FE) sin(gammac)
2117
2118Q’ = e^- (B v ‘/ A)  where e is the base of natural logarithms.
2119S' = (Q’ - 1 / Q’) / 2
2120T’ = (Q’ + 1 / Q’) / 2
2121V’ = sin (B u’ / A)
2122U’ = (V’ cos(gammac) + S’ sin(gammac)) / T’
2123t’ = (H / ((1 + U’) / (1 - U’))^0.5)^(1 / B)
2124
2125chi = pi / 2 - 2 atan(t’)
2126
2127lat = chi + sin(2chi).( e^2 / 2 + 5*e^4 / 24 + e^6 / 12 + 13*e^8 / 360) +  sin(4*chi).( 7*e^4 /48 + 29*e^6 / 240 + 811*e8 / 11520) +  sin(6chi).( 7*e^6 / 120 + 81*e8 / 1120) +  sin(8chi).(4279 e^8 / 161280)
2128
2129lon=  lon0  - atan ((S’ cos(gammac) - V’ sin(gammac)) / cos(B*u’ / A)) / B","For Projected Coordinate System  Timbalai 1948 / R.S.O. Borneo (m)
2130
2131Parameters:
2132Ellipsoid:  Everest 1830 (1967 Definition)
2133a = 6377298.556 metres 1/f = 300.8017
2134then e = 0.081472981and e2 = 0.006637847
2135
2136Latitude Projection Centre fc = 4°00'00""N = 0.069813170 rad
2137Longitude Projection Centre lc = 115°00'00""E = 2.007128640 rad
2138Azimuth of central line ac = 53°18'56.9537"" = 0.930536611 rad
2139Rectified to skew gc= 53°07'48.3685"" = 0.927295218 rad
2140Scale factor ko= 0.99984
2141False Eastings FE = 0.00 m
2142False Northings FN = 0.00 m
2143
2144Forward calculation for:
2145Latitude lat = 5°23'14.1129""N = 0.094025313 rad
2146Longitude lon = 115°48'19.8196""E = 2.021187362 rad
2147
2148B = 1.003303209            F = 1.072121256
2149A =6376278.686            H = 1.000002991
2150to = 0.932946976          g0 = 0.927295218
2151D = 1.002425787           lon0 = 1.914373469
2152D2 =1.004857458
2153uc =738096.09              vc =0.00
2154
2155t =0.910700729             Q =1.098398182
2156S =0.093990763            T = 1.004407419
2157V =0.106961709            U = 0.010967247
2158v =-69702.787                u =901334.257
2159
2160Then Easting E =      679245.73 m
2161        Northing N =     596562.78 m
2162
2163Reverse calculations for same easting and northing first gives :
2164v’ =   -69702.787              u’ =901334.257
2165Q’ = 1.011028053
2166S’  = 0.010967907          T’ = 1.000060146
2167V’ = 0.141349378           U’ = 0.093578324
2168t’ = 0.910700729             c = 0.093404829
2169
2170Then Latitude = 5°23'14.113""N
2171         Longitude = 115°48'19.820""E",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-10-16,97.62  99.811 2004.43 2004.60,0
21729813,Laborde Madagascar,1,"Note : these formulas have been transcribed from IGN Document NT/G 74. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2173
2174From the defining parameters the following constants for the map projection may be calculated:
2175
2176B = {1+[e^2 cos^4(phiC)]/(1– e^2)}^0.5
2177phiS = asin[sin(phiC) / B]
2178R = a  kC {(1–e^2)^0.5 / [1–e^2 sin^2(phiC)]}
2179C = ln[tan(pi/4+phiS /2)] – B. ln{tan(pi/4+phiC /2) ([1 – e sin(phiC)]/[1+e sin(phiC)])^(e/2)}
2180
2181Forward case: To compute (E,N) from a given (lat,lon)
2182L = B.(lon–lonC)
2183q = C + B . ln{tan(pi/4+lat/2) ([1–e sin(lat)] / [1+e sin(lat)])^(e/2)}
2184P = 2.atan[e ^q] – pi/2   where e is the base of natural logarithms
2185U = cos(P).cos(L).cos(phiS) + sin(P).sin(phiS)
2186V = cos(P).cos(L).sin(phiS) - sin(P).cos(phiS)
2187W = cos(P).sin(L)
2188d = (U^2+V^2)^0.5
2189if d <> 0 then L' = 2.atan(V/(U+d)) and P' = atan(W/d)
2190if d = 0 then L' = 0 and P' = sign(W).pi/2
2191H = –L' + i.ln(tan(pi/4+P'/2))                 where i^2 = –1
2192G = (1 – cos(2.alphaC) + i.sin(2.alphaC))/12
2193E = FE + R . IMAGINARY(H + G.H^3)
2194N = FN + R . REAL(H + G.H^3)
2195
2196Reverse case: To compute (lat, lon) from a given (E,N):
2197G = (1–cos(2.alphaC) + i.sin(2.alphaC))/12   where i^2 = –1
2198To solve for Latitude and Longitude, a re-iterative solution is required, where the first two elements are
2199H0 = (N–FN)/R + i.(E–FE)/R  ie k = 0
2200H1 = H0/(H0 + G.H0^3),    i.e. k = 1,
2201and in subsequent reiterations, k increments by 1
2202Hk+1 = (H0+2.G.Hk^3)/(3.G.Hk^2+1)
2203Re-iterate until ABSOLUTE(REAL([H0-Hk-G.Hk^3)])) < 1E-11
2204
2205L' = –1.REAL(Hk)
2206P' = 2.atan{ e ^[IMAGINARY(Hk)]} – pi/2  where e is the base of natural logarithms.
2207U' = cos(P').cos(L').cos(phiS) + cos(P').sin(L').sin(phiS)   
2208V' = sin(P')
2209W' = cos(P').cos(L').sin(phiS) – cos(P').sin(L').cos(phiS)
2210d = (U'^2+ V'^2)^0.5
2211if d <> 0 then L = 2 atan[V'/( U'+d)] and P = atan(W'/d)
2212if d = 0   then L = 0 and P = SIGN(W') . pi/2
2213lon = lonC + (L/B)
2214
2215q' = {ln[tan(pi/4+P/2)] – C}/B
2216The final solution for latitude requires a second re-iterative process, where the first element is
2217lat'(0) = 2.atan(e ^q') – pi/2    where e is the base of natural logarithms.
2218And the subsequent elements are
2219lat'(k) = 2.atan{({1+e.sin[lat(k-1)]} / {1–e.sin[lat(k-1)]})^(e/2).e ^q'} – pi/2  for K =1 ?
2220Iterate until ABSOLUTE(lat(k)-lat(k-1))  < 1E-11       
2221lat = lat(k)",See information source.,,"""La nouvelle projection du Service Geographique de Madagascar""; J. Laborde; 1928. Also IGN Paris technical note NT/G 74.",EPSG,2007-03-27,97.613 2006.96 2007.04,0
22229814,Swiss Oblique Cylindrical,1,See information source.,See information source.,Can be accomodated by Oblique Mercator method (code 9815).,"""Die projecktionen der Schweizerischen Plan und Kartenwerke""; J Bollinger; 1967",EPSG,1996-09-18,97.612,0
22239815,Oblique Mercator,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2224
2225The following constants for the projection may be calculated :
2226
2227B = {1 + [e^2 * cos^4(latc) / (1 - e^2 )]}^0.5
2228A = a * B * kc *(1 - e^2 )^0.5 / ( 1 - e^2 * sin^2(latc))
2229t0 = tan(pi/4 - latc/2) / ((1 - e*sin(latc)) / (1 + e*sin(latc)))^(e/2)
2230D = B (1 - e^2)^0.5  / (cos(latc) * ( 1 - e^2*sin^2(latc))^0.5)
2231if D < 1 to avoid problems with computation of F make D^2  = 1
2232F = D + (D^2 - 1)^0.5  * SIGN(latc)
2233H = F*(t0)^B
2234G = (F - 1/F) / 2
2235gamma0 = asin(sin(alphac) / D)
2236lon0 = lonc - (asin(G*tan(gamma0))) / B
2237vc =0
2238In general: uc = (A / B) atan((Dsq - 1)^0.5 / cos (alphac) ) * SIGN(latc)
2239but for the special cases where alphac = 90 degrees (e.g. Hungary, Switzerland) then
2240uc = A*(lonc - lon0) 
2241
2242 
2243Forward case: To compute (E,N) from a given (lat,lon) :
2244
2245t = tan(pi/4 - lat/2) / ((1 - e sin (lat)) / (1 + e sin (lat)))^(e/2)
2246Q = H / t^B
2247S = (Q - 1 / Q) / 2
2248T = (Q + 1 / Q) / 2
2249V = sin(B (lon - lon0))
2250U = (- V cos(gamma0) + S sin(gamma0)) / T
2251v = A ln((1 - U) / (1 + U)) / 2 B
2252u = (A atan((S cos(gamma0) + V sin(gamma0)) / cos(B (lon - lon0 ))) / B) - (ABS(uc) . SIGN(latc))
2253
2254The rectified skew co-ordinates are then derived from:
2255E = v cos(gammac) + u sin(gammac) + Ec
2256N = u cos(gammac) - v sin(gammac) + Nc
2257
2258Reverse case: Compute (lat,lon)  from a given (E,N)  :
2259
2260v’ = (E - Ec) cos(gammac) - (N - Nc) sin(gammac)
2261u’ = (N - Nc) cos(gammac) + (E - Ec) sin(gammac) + (ABS(uc) . SIGN(latc))
2262
2263Q’ = e- (B v ‘/ A)  where e is the base of natural logarithms.
2264S' = (Q’ - 1 / Q’) / 2
2265T’ = (Q’ + 1 / Q’) / 2
2266V’ = sin (B u’ / A)
2267U’ = (V’ cos(gammac) + S’ sin(gammac)) / T’
2268t’ = (H / ((1 + U’) / (1 - U’))^0.5)^(1 / B)
2269
2270chi = pi / 2 - 2 atan(t’)
2271
2272lat = chi + sin(2chi).( e^2 / 2 + 5*e^4 / 24 + e^6 / 12 + 13*e^8 / 360) +  sin(4*chi).( 7*e^4 /48 + 29*e^6 / 240 + 811*e8 / 11520) +  sin(6chi).( 7*e^6 / 120 + 81*e8 / 1120) +  sin(8chi).(4279 e^8 / 161280)
2273
2274lon=  lon0  - atan ((S’ cos(gammac) - V’ sin(gammac)) / cos(B*u’ / A)) / B","For Projected Coordinate System  Timbalai 1948 / R.S.O. Borneo (m)
2275
2276Parameters:
2277Ellipsoid:  Everest 1830 (1967 Definition)
2278a = 6377298.556 metres 1/f = 300.8017
2279then e = 0.081472981and e^2 = 0.006637847
2280
2281Latitude Projection Centre fc = 4°00'00""N = 0.069813170 rad
2282Longitude Projection Centre lc = 115°00'00""E = 2.007128640 rad
2283Azimuth of central line ac = 53°18'56.9537"" = 0.930536611 rad
2284Rectified to skew gc= 53°07'48.3685"" = 0.927295218 rad
2285Scale factor ko= 0.99984
2286Easting at projection centre Ec = 590476.87 m
2287Northing at projection centre Nc = 442857.65 m
2288
2289Forward calculation for:
2290Latitude lat = 5°23'14.1129""N = 0.094025313 rad
2291Longitude lon = 115°48'19.8196""E = 2.021187362 rad
2292
2293B = 1.003303209            F = 1.072121256
2294A =6376278.686            H = 1.000002991
2295to = 0.932946976          g0 = 0.927295218
2296D = 1.002425787           lon0 = 1.914373469
2297D2 =1.004857458
2298uc =738096.09              vc =0.00
2299
2300t =0.910700729             Q =1.098398182
2301S =0.093990763            T = 1.004407419
2302V =0.106961709            U = 0.010967247
2303v =-69702.787                u = 163238.163
2304
2305Then Easting E =      679245.73 m
2306        Northing N =     596562.78 m
2307
2308Reverse calculations for same easting and northing first gives :
2309v’ =   -69702.787              u’ = 901334.257
2310Q’ = 1.011028053
2311S’  = 0.010967907          T’ = 1.000060146
2312V’ = 0.141349378           U’ = 0.093578324
2313t’ = 0.910700729             c = 0.093404829
2314
2315Then Latitude = 5°23'14.113""N
2316         Longitude = 115°48'19.820""E",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-10-16,99.811 2004.43 2004.60,0
23179816,Tunisia Mining Grid,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2318
2319This grid is used as the basis for mineral leasing in Tunsia.  Lease areas are approximately 2 x 2 km or 400 hectares.  The corners of these blocks are defined through a six figure grid reference where the first three digits are an easting in kilometres and the last three digits are a northing.  The latitudes and longitudes for block corners at 2 km intervals are tabulated in a mining decree dated 1st January 1953.  From this tabulation in which geographical coordinates are given to 5 decimal places it can be seen that:
2320a)  the minimum easting is 94 km, on which the longitude is 5.68989 grads east of Paris.
2321b)  the maximum easting is 490 km, on which the longitude is 10.51515 grads east of Paris.
2322c)  each 2 km grid easting interval equals 0.02437 grads.
2323d)  the minimum northing is 40 km, on which the latitude is 33.39 grads.
2324e)  the maximum northing is 860 km, on which the latitude is 41.6039 grads.
2325f)  between 40 km N and 360 km N, each 2 km grid northing interval equals 0.02004 grads.
2326g)  between 360 km N and 860 km N, each 2 km grid northing interval equals 0.02003 grads.
2327
2328Formulae are:
2329
2330Grads from Paris
2331
2332Lat (grads) = 36.5964 + [(N - 360) * A]
2333where N is in kilometres and A = 0.010015 if N > 360, else A = 0.01002.
2334
2335LonParis (grads) = 7.83445 + [(E - 270) * 0.012185], where E is in kilometres.
2336
2337The reverse formulae are:
2338
2339E (km) = 270 + [(LonParis - 7.83445) / 0.012185] where LonParis is in grads.
2340
2341N (km) = 360 + [(Lat - 36.5964) / B]
2342where Lat is in grads and B = 0.010015  if  lat>36.5964, else B = 0.01002.
2343
2344Degrees from Greenwich.
2345
2346Modern practice in Tunisia is to quote latitude and longitude in degrees with longitudes referenced to the Greenwich meridian.  The formulae required in addition to the above are:
2347
2348Lat (degrees) =  (Latg * 0.9) where Latg is in grads.
2349LonGreenwich (degrees) = [(LonParis + 2.5969213) * 0.9] where LonParis is in grads.
2350
2351
2352Lat (grads) =  (Latd / 0.9) where Latd is in decimal degrees.
2353LonParis (grads) = [(LonGreenwich / 0.9) - 2.5969213)] where LonGreenwich is in decimal degrees.","For grid location 302598,
2354Latitude = 36.5964 + [(598 - 360) * A].  As N > 360, A = 0.010015.
2355Latitude = 38.97997 grads = 35.08197 degrees.
2356
2357Longitude  = 7.83445 + [(E - 270) * 0.012185, where E = 302.
2358Longitude  = 8.22437 grads east of Paris = 9.73916 degrees east of Greenwich.",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2000-03-07,99.811  2000.08,0
23599817,Lambert Conic Near-Conformal,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2360
2361To compute the Lambert Conic Near-Conformal the following formulae are used. First compute constants for the projection:
2362
2363n = f / (2-f)
2364A = 1 / (6 rhoO nuO)
2365A’ = a [ 1- n + 5 (n^2 - n^3 ) / 4 + 81 ( n^4 - n^5 ) / 64]*pi /180
2366B’ = 3 a [ n - n^2 + 7 ( n^3 - n^4 ) / 8 + 55 n^5 / 64] / 2
2367C’ = 15 a [ n^2 -n^3 + 3 ( n^4 - n^5 ) / 4 ] / 16
2368D’ = 35 a [ n^3 - n^4 + 11 n^5 / 16 ] / 48
2369E’ = 315 a [ n^4 - n^5 ] / 512
2370r0 = ko nu0 / tan(lat0)
2371s0 = A’ lat0 - B’ sin(2 latO) + C’ sin(4 latO) - D’ sin(6 latO) + E’ sin(8 latO) where in the first term lat0 is in degrees, in the other terms latO is in radians.
2372
2373Then for the computation of easting and northing from latitude and longitude:
2374
2375s = A’ lat - B’ sin(2 lat) + C’ sin(4 lat) - D’ sin(6 lat) + E’ sin(8 lat) where in the first term latO is in degrees, in the other terms latO is in radians.
2376m = s - sO
2377M = ko ( m + A m^3)
2378r = rO - M
2379theta = (lon - lonO) sin(latO)
2380
2381and
2382E = FE + r sin(theta)
2383N = FN + M + r sin(theta) tan(theta/2) using the natural origin rather than the false origin.
2384
2385The reverse formulas for latitude and longitude from Easting and northing are:
2386
2387theta' = arctan {(E –  FE) / [rO –  (N –  FN)]}
2388r' = +/- {(E –  FE)^2 + [rO –  (N –  FN)]}^2}^0.5, taking the sign of latO
2389M' = rO – r'
2390
2391If an exact solution is required, it is necessary to solve for m and * using iteration of the two equations:
2392m'      =       m' – [ ko m' – ko A (m')3] / [– ko – 3 ko A (m')2]
2393using M' for m' in the first iteration. This will usually converge (to within 1mm) in a single iteration. Then
2394lat' = lat' +{m' + sO – [A' lat' (180/pi) – B' sin(2 lat')  + C' sin(4 lat')  –  D' sin(6lat') + E' sin(8 lat')]}/ [A' (pi/180)]
2395first using lat' = latO + m'/ [A' (pi/180)].
2396
2397However the following non-iterative solution is accurate to better than 0.001"" (3mm) within 5 degrees latitude of the projection origin and should suffice for most purposes:
2398m' =    M' – [M' –o M' – ko A (')^3] / [– ko – 3 ko A (M')^2]
2399lat' = latO + m'/ [A' (pi/180)]
2400s' =    ' lat' –  B' sin(2 lat')  + C' sin(4 lat')  –  D' sin(6 lat') + E' sin(8 lat')
2401                where in the fterm lat' is in degrees, in the other terms lat' is in radians.
2402ds' =   A'(18pi) – 2B' cos(2 lat')  + 4C' cos(4 lat')  –  6D' cos(6 lat') + 8E' cos(8 lat')
2403lat = lat' – [(m' + sO – s') / (–ds')] radians
2404
2405Then after solution of lat using either method above
2406lon = lonO + theta' / sin(latO)         here lonO and lon are in radians.","For Projected Coordinate System: Deir ez Zor / Levant Zone
2407
2408Parameters:
2409Ellipsoid  Clarke 1880 (IGN)  a = 6378249.2 m  1/f = 293.46602
2410then b = 6356515.000    n = 0.001706682563
2411
2412Latitude Natural Origin  = 34°39'00""N = 0.604756586 rad
2413Longitude Natural Origin = 37°21'00""E=  0.651880476 rad
2414Scale factor at origin ko = 0.99962560
2415False Eastings FE  = 300000.00 m
2416False Northings FN  = 300000.00 m
2417
2418Forward calculation for:
2419Latitude of 37°31'17.625""N = 0.654874806 rad
2420Longitude of 34°08'11.291""E = 0.595793792 rad
2421first gives
2422A = 4.1067494 * 10e-15      A’=111131.8633
2423B’= 16300.64407     C’= 17.38751     D’= 0.02308      E’= 0.000033
2424so = 3835482.233    s  = 4154101.458     m = 318619.225
2425M = 318632.72         Ms = 30.82262319
2426q = -0.03188875       ro = 9235264.405     r = 8916631.685
2427
2428Then Easting E =   15707.96 m (c.f. E =   15708.00 using full formulae)
2429         Northing N =      623165.96 m (c.f. N = 623167.20 using full formulae)
2430
2431Reverse calculation for the same easting and northing first gives
2432
2433q' = -0.03188875
2434r’  =  8916631.685
2435M’= 318632.72
2436
2437Latitude =      0.654874806 rad = 37°31'17.625""N
2438Longitude = 0.595793792 rad =  34°08'11.291""E",The Lambert Near-Conformal projection is derived from the Lambert Conformal Conic projection by truncating the series expansion of the projection formulae.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2005-09-06,99.811 2004.61 2005.39,0
24399818,American Polyconic,1,See information source.,See information source.,See information source for formula and example.,"US Geological Survey Professional Paper 1395; ""Map Projections - A Working Manual"";  J. Snyder",EPSG,1999-10-20,99.55,0
24409819,Krovak Oblique Conic Conformal,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2441
2442From the defining parameters the following constants for the projection may be calculated :
2443
2444B = {1 + [e^2 * cos^4(latC) / (1 - e^2)]}^0.5
2445A=a (1 - e^2 )^0.5 / [ 1 - e^2 sin^2 (latC)]
2446gammaO=asin[sin (latC) / B]
2447tO =tan(pi / 4 + gamma0 / 2) . [(1 + e sin(latC)) / (1 - e sin (latC))]^(e.B/2) / [tan(pi / 4 + latC/ 2)]^B
2448n = sin (latp)
2449rO=kp  A / tan (latp)
2450
2451To derive the projected Southing and Westing coordinates of a point with geographical coordinates (lat, lon) the formulas for the oblique conic conformal are:
2452
2453Southing:    X  = Ec + r cos theta
2454Westing:     Y = Nc + r sin theta
2455 
2456where
2457
2458U=2 (atan { tO. tan^B (lat/2 + pi / 4 ) / [(1 + e sin (lat)) / (1 - e sin (lat))]^[e.B/2 ]} - pi / 4)
2459V=B (lonc -  lon)
2460S=asin [ cos (alphaC) sin ( U ) + sin (alphaC) cos (U) cos (V)]
2461D=asin [ cos ( U ) sin ( V ) / cos ( S ) ]
2462theta=n D
2463r=rO tan^n . (pi / 4 + phi1/ 2) / tan^n ( S/2 + pi / 4 )
2464
2465The reverse formulas to derive the latitude and longitude of a point from its Southing and Westing values are:
2466
2467l
2468r' =[(X - Ec)^2 + (Y - Nc)^2]^(1/2) 
2469theta'=arctan [(Y- Nc)/(X- Ec)]
2470D'=theta' / sin ( latp)
2471S'=2*{atan[(rO / r' )^(1/n) tan(pi / 4 + latp/ 2)] - pi / 4}
2472U'=asin ( cos (alphaC) sin ( S' ) - sin (alphaC) cos (S') cos (D') )
2473V'=asin ( cos (S') sin (D') / cos (U'))
2474
2475Then latitude lat is found by iteration using U' as the value for lat(j-1) in the first iteration:
2476lat(j) = 2*(atan{tO^(-1/B) tan^(1/B).( U’/2 + pi / 4 ).[(1 + e sin ( lat( j-1)) / (1 - e sin ( lat(j-1))]^(e/2)} - pi / 4)
2477
2478Then
2479lon = lonc - V' / B","For Projected Coordinate Reference System: S-JTSK (Ferro) / Krovak
2480
2481N.B. Krovak projection uses Ferro as the prime meridian. This has a longitude with reference to Greenwich of 17 deg 40 min West. To apply the formulae the defining longitudes must be corrected to the Greenwich meridian.
2482
2483Parameters:
2484Ellipsoid  Bessel 1841   a = 6377397.155m  1/f = 299.15281
2485    then    e = 0.081696831        e2 = 0.006674372
2486
2487Latitude of projection centre = 49o 30'00"" N =  0.863937979 rad
2488Longitude of Origin = 42°30'00"" East of Ferro
2489Longitude of Ferro is 17°40'00"" West of Greenwich
2490Longitude of Origin = 24°50'00"" East of Greenwich = 0.433423431   rad
2491Latitude of pseudo standard parallel = 78°30'00""N
2492Azimuth of centre line = 30°17'17.3031""
2493Scale factor on pseudo Standard Parallel (ko) = 0.99990
2494Easting at projection centre (Ec) = 0.00 m
2495Northing  at projection centre (Nc) = 0.00 m
2496
2497Projection constants:
2498B=1.000597498
2499A=6380703.611
2500gammaO=0.863239103
2501tO=1.003419164
2502n= 0.979924705
2503rO=1298039.005
2504
2505Forward calculation for:
2506Latitude = 50°12'32.4416""N = 0.876312566 rad
2507Longitude = 16°50'59.1790""E = 0.294083999 rad
2508
2509Gives
2510
2511U=0.875596949
2512V=0.139422687
2513S=1.386275049
2514D=0.506554623
2515theta=0.496385389
2516rO=1194731.014
2517
2518Then Southing X =  1050538.643 m
2519         Westing  Y =    568990.997 m
2520
2521Reverse calculation for the same Southing and Westing gives
2522
2523r' =1194731.014
2524theta' =0.496385389
2525D'=0.506554623
2526S'=1.386275049
2527U'=0.875596949
2528V'=0.139422687
2529lat(iteration 1)=0.876310601
2530lat(iteration 2)=0.876312560
2531lat(iteration3)=0.876312566
2532
2533Latitude = 0.876312566 rad = 50°12'32.4416""N
2534Longitude = 0.294083999 rad = 16°50'59.1790""E",,Research Institute for Geodesy Topography and Cartography (VUGTK); Prague.,EPSG,2006-03-31,2002.95 2006.18,0
25359820,Lambert Azimuthal Equal Area,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2536
2537Oblique aspect
2538To derive the projected coordinates of a point, geodetic latitude (lat) is converted to authalic latitude (ß). The formulae  to convert geodetic latitude and longitude (lat,lon) to Easting and Northing are:
2539
2540Easting, E   = FE + {(B . D) . [cos ß . sin(lon – lonO)]}
2541Northing, N = FN + (B / D) . {(cos ßO . sin ß) –  [sin ßO . cos ß . cos(lon – lonO)]}
2542
2543where
2544B = Rq . (2 / {1 + sin ßO . sin ß + [cos ßO . cos ß . cos(lon – lonO)]})^0.5
2545D = a . [cos latO / (1 – e2 sin2 latO)^0.5] / (Rq . cos ßO)
2546Rq = a . (qP  / 2)^0.5
2547ß = asin (q / qP)
2548ßO = asin (qO / qP)
2549q = (1 – e^2) . ([sin(lat) / (1 – e^2 sin^2(lat))] – {[1/(2e)] . ln [(1 – e sin(lat)) / (1 + e sin(lat))]})
2550qO = (1 – e^2) . ([sin(latO) / (1 – e^2 sin^2(latO))] – {[1/(2e)] . ln [(1 – e sin(latO)) / (1 + e sin(latO))]})
2551qP = (1 – e^2) . ([sin(latP) / (1 – e^2 sin^2(latP))] – {[1/(2e)] . ln [(1 – e sin(latP)) / (1 + e sin(latP))]})
2552where *P = p/2 radians, thus
2553qP = (1 – e^2) . ([1 / (1 – e^2)] – {[1/(2e)] . ln [(1 – e) / (1 + e)]})
2554
2555The reverse formulas to derive the geodetic latitude and longitude of a point from its Easting and Northing values are:
2556
2557lat = ß' + [(e^2/3 + 31e^4/180 + 517e^6/5040) . sin 2ß'] + [(23e^4/360 + 251e^6/3780) . sin 4ß'] +  [(761e^6/45360) . sin 6ß']
2558
2559lon = lonO + atan {(E-FE) . sin C / [D. rho . cos ßO . cos C – D^2. (N-FN) . sin ßO . sin C]}
2560where
2561ß' = asin{(cosC . sin ßO) + [(D . (N-FN) . sinC . cos ßO) / rho]}
2562C = 2 . asin(rho / 2 . Rq)
2563rho = {[(E-FE)/D]^2 + [D . (N –FN)]^2}^0.5
2564
2565and D, Rq, and ßO are as in the forward equations.
2566
2567Polar aspect
2568For the polar aspect of the Lambert Azimuthal Equal Area projection, some of the above equations are indeterminate. Instead, for the forward case from latitude and longitude (lat, lon) to Easting (E) and Northing (N):
2569
2570For the north polar case:
2571        Easting, E   = FE + [rho  sin(lon – lonO)]
2572        Northing, N = FN –  [rho  cos(lon – lonO)]
2573where
2574rho = a (qP  – q)^0.5
2575and qP  and q are found as for the general case above.
2576
2577For the south polar case:
2578        Easting, E   = FE + [rho . sin(lon – lonO)]
2579        Northing, N = FN +  [rho . cos(lon – lonO)]
2580where
2581rho = a (qP  + q)^0.5
2582and qP  and q are found as for the general case above.
2583
2584For the reverse formulas to derive the geodetic latitude and longitude of a point from its Easting and Northing:
2585lat = ß' + [(e^2/3 + 31e^4/180 + 517e^6/5040)  sin 2ß'] + [(23e^4/360 + 251e^6/3780)  sin 4ß'] +  [(761e^6/45360)  sin 6ß']
2586as for the oblique case, but where
2587ß' = ±asin [1– rho^2 / (a^2{1– [(1– e^2)/2e)) ln[(1-e)/(1+ e)]})], taking the sign of  latO
2588and rho = {[(E –FE)]^2 + [(N – FN)]^2}^0.5
2589Then
2590lon = lonO + atan [(E –FE)] / (N –FN)] for the south pole case
2591and
2592lon = lonO + atan [(E –FE)] / – (N –FN)] for the north pole case.","For Projected Coordinate Reference System: ETRS89 / ETRS-LAEA
2593
2594Parameters:
2595Ellipsoid:GRS 1980  a = 6378137.0 metres    1/f = 298.2572221
2596then e = 0.081819191
2597
2598Latitude of natural origin (latO): 52°00'00.000""N = 0.907571211  rad
2599Longitude of natural origin (lonO): 10°00'00.000""E = 0.174532925  rad
2600False easting (FE): 4321000.00 metres
2601False northing (FN) 3210000.00 metres
2602
2603Forward calculation for:
2604Latitude (lat) =  50°00'00.000""N = 0.872664626 rad
2605Longitude(lon) = 5°00'00.000""E = 0.087266463 rad
2606
2607First gives
2608qP = 1.995531087
2609qO = 1.569825704
2610q = 1.525832247
2611Rq = 6371007.181
2612betaO = 0.905397517
2613beta = 0.870458708
2614D = 1.000425395
2615B = 6374393.455
2616
2617whence
2618E = 3962799.45  m
2619N = 2999718.85  m
2620
2621Reverse calculation for the same Easting and Northing (3962799.45 E, 2999718.85  N) first gives:
2622
2623rho = 415276.208
2624C = 0.065193736
2625beta' = 0.870458708
2626
2627Then Latitude = 50°00'00.000""N
2628        Longitude = 5°00'00.000""E",This is the ellipsoidal form of the projection.,"USGS Professional Paper 1395, ""Map Projections - A Working Manual"" by John P. Snyder.",EPSG,2007-01-12,2003.35 2004.43 2005.075 2005.29 2006.20 2007.005,0
26299821,Lambert Azimuthal Equal Area (Spherical),1,See information source.,See information source.,This is the spherical form of the projection.  See coordinate operation method Lambert Azimuthal Equal Area (code 9820) for ellipsoidal form.  Differences of several tens of metres result from comparison of the two methods.,"USGS Professional Paper 1395, ""Map Projections - A Working Manual"" by John P. Snyder.",EPSG,2001-06-05,,0
26309822,Albers Equal Area,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2631
2632To derive the projected coordinates of a point, geodetic latitude (lat) is converted to authalic latitude (ß). The formulas to convert geodetic latitude and longitude (lat, lon) to Easting (E) and Northing (N) are:
2633Easting (E)     =  EF + (rho . sin(theta))
2634Northing (N)  =  NF + rhoO – (rho . cos(theta))
2635
2636where
2637theta  = n . (lon - lonO)
2638rho  = [a . (C – n.alpha)^0.5] / n
2639rhoO = [a . (C – n.alphaO)^0.5] / n
2640and
2641C  = m1^2 +  (n . alpha1)
2642n   = (m1^2 – m2^2) / (alpha2 - alpha1)
2643m1 = cos lat1 / (1 – e^2 sin^2(lat1))^0.5
2644m2 = cos lat2 / (1 – e^2 sin^2(lat2))^0.5
2645alpha  = (1 – e^2) . {[sin(lat) / (1 – e^2 sin^2(lat))] – [1/(2e)] . ln [(1 – e sin(lat)) / (1 + e sin(lat))]}
2646alphaO  = (1 – e^2) . {[sin(latO) / (1 – e^2 sin^2(latO))] – [1/(2e)] . ln [(1 – e sin(latO)) / (1 + e sin(latO))]}
2647alpha1  = (1 – e^2) . {[sin(lat1) / (1 – e^2 sin^2(lat1))] – [1/(2e)] . ln [(1 – e sin(lat1)) / (1 + e sin(lat1))]}
2648alpha2  = (1 – e^2) . {[sin(lat2) / (1 – e^2 sin^2(lat2))] – [1/(2e)] . ln [(1 – e sin(lat2)) / (1 + e sin(lat2))]}
2649
2650The reverse formulas to derive the geodetic latitude and longitude of a point from its Easting and Northing values are:
2651lat = ß' + (e^2/3 + 31e^4/180 + 517e^6/5040) . sin 2ß'] + [(23e^4/360 + 251e^6/3780) . sin 4ß'] + [(761e^6/45360) . sin 6ß']
2652
2653lon =   lonO + (theta / n)
2654where
2655ß' =  asin(alpha' / {1 – [(1 – e^2) / (2 . e)] . ln [(1 – e) / (1 + e)]
2656alpha' =  [C – (rho^2 . N^2 / a^2)] / n
2657rho =  {(E – EF)^2 + [rhoO – (N – NF)]^2 }^0.5
2658theta =  atan [(E – EF) / [rhoO – (N – NF)]
2659and C, n and rhoO are as in the forward equations.",See Information Source.,,"USGS Professional Paper 1395, ""Map Projections - A Working Manual"" by John P. Snyder.",EPSG,2007-03-27,2006.20 2007.049,0
26609823,Equidistant Cylindrical,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2661
2662This method has one of the simplest formulas available. If the latitude of natural origin (latO) is at the equator the method is also known as Plate Carrée. It is not used for rigorous topographic mapping because its distortion characteristics are unsuitable. Formulas are included to distinguish this map projection method from an approach sometimes mistakenly called by the same name and used for simple computer display of geographic coordinates – see Pseudo Plate Carrée (coordinate operation method code 9825).
2663
2664For the forward calculation:
2665
2666X =  R . (lon - lonO) . cos(latO)
2667Y =  R .  lat
2668
2669where R = ((a^2 * (1 –  e^2)) / (1 – e^2 sin^2 latO)^2)^0.5
2670and latO, lonO, lat and lon are expressed in radians.
2671
2672For the Equidistant Cylindrical method on a sphere (not ellipsoid), e = 0 and R = a.
2673
2674For the reverse calculation:
2675
2676lat = Y / R 
2677lon = lonO + (X / R cos(latO))
2678
2679where R is as for the forward method.",See information source.,"If the latitude of natural origin is at the equator, also known as Plate Carrée. See also Pseudo Plate Carree, method code 9825.","US Geological Survey Professional Paper 1395; ""Map Projections - A Working Manual"";  J. Snyder.",EPSG,2002-12-23,2002.92,0
26809824,Transverse Mercator Zoned Grid System,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2681
2682The standard Transverse Mercator formulas (coordinate operation method 9807) are modified as follows:
2683
2684Zone number, Z, = int((Long + LongI + W) / W)  with Long,  LongI and W in degrees.
2685where (LongI) is the Initial Longitude of the zoned grid system
2686and W is the width of each zone of the zoned grid system.
2687If Long < 0, Long = (Long + 360) degrees.
2688
2689Then,
2690   Long0  = [Z * W] – [LongI + (W/2)]
2691
2692For the forward calculation,
2693   Easting, E =  Z*10^6 + FE + k0.nu[A + (1 - T + C)A^3/6 + (5 - 18T + T^2 + 72C - 58e'^2)A^5/120]
2694   
2695and in the reverse calculation for longitude,
2696   D = (E – [FE + Z*10^6])/(nu1.k0)",(none),If locations fall outwith the fixed zones the general Transverse Mercator method (code 9807) must be used for each zone.,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2001-06-05,,0
26979825,Pseudo Plate Carree,1,"X = Lon
2698Y = Lat
2699
2700Lat = Y
2701Lon = X",(none),"Used only for depiction of graticule (latitude/longitude) coordinates on a computer display. The axes units are decimal degrees and of variable scale. The origin is at Lat = 0, Long = 0. See Equidistant Cylindrical, code 9823, for proper Plate Carrée.","EPSG guidance note #7-2, http://www.epsg.org",EPSG,2001-11-06,,0
27029826,Lambert Conic Conformal (West Orientated),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2703
2704In older mapping of Denmark and Greenland the Lambert Conic Conformal is used with axes positive north and west. To derive the projected Westing and Northing coordinates of a point with geographical coordinates (Lat, Lon) the formulas are as for the standard Lambert Conic Conformal (1SP) case (coordinate operation method code 9801) except for:
2705
2706W =  FE – r.sin(theta)
2707
2708In this formula the term FE retains its definition, i.e. in the Lambert Conic Conformal (West Orientated) method it increases the Westing value at the natural origin. In this method it is effectively false westing (FW).
2709
2710The reverse formulas to derive the latitude and longitude of a point from its Westing and Northing values are as for the standard Lambert Conic Conformal (1SP) case except for:
2711
2712theta' = arctan[(FE – W)/{r0 – (N – FN)}]
2713r' = +/-[(FE – W)^2 + {r0 – (N – FN)}^2]^0.5, taking the sign of n.","See Lambert Conic Conformal (1SP), code 9801, for general methodology.",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-01-16,,0
27149827,Bonne,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2715
2716The formulas to convert geodetic latitude and longitude (lat, lon) to Easting and Northing are:
2717
2718E = (rho . sin T) + FE
2719N = (a . mO / sin(latO) –  rho . cos T) + FN
2720
2721where
2722m = cos(lat) / (1 –  e^2sin^2(lat))^0.5
2723with lat in radians and mO for latO, the latitude of the origin, derived in the same way.
2724
2725M = a[(1 –  e^2/4 –  3e^4/64 –  5e^6/256 –....)lat – (3e^2/8 + 3e^4/32 + 45e^6/1024+....)sin(2 lat) + (15e^4/256 + 45e^6/1024 +.....)sin(4 lat) –  (35e^6/3072 + ....)sin(6 lat) + .....]
2726with lat in radians and MO for latO, the latitude of the origin, derived in the same way.
2727
2728rho = a . mO / sin(latO) + MO – M
2729T = a . m (lon – lonO) / rho       with lon and lonO in radians
2730
2731For the reverse calculation:
2732X = E – FE
2733Y = N – FN
2734rho = ± [X^2 + (a . mO / sin(latO) – Y)^2]^0.5  taking the sign of latO
2735M = a . mO / sin(latO) + MO – rho
2736mu = M / [a (1 – e^2/4 – 3e^4/64 – 5e^6/256 – …)]
2737e1 = [1 – (1 – e^2)^0.5] / [1 + (1 – e^2)^0.5]
2738lat = mu + ((3 e1 / 2) –  (27 e1^3 / 32) +.....)sin(2 mu) + ((21 e1^2 / 16) –  (55 e1^4 / 32) + ....)sin(4 mu)
2739  + ((151 e1^3 / 96) +.....)sin(6 mu) + ((1097 e1^4 / 512)  –  ....)sin(8 mu) + ......
2740
2741m = cos(lat) / (1 – e^2 sin^2(lat))^0.5
2742
2743If latO is not negative
2744lon = lonO + rho {atan[X / (a . mO / sin(latO) – Y)]} / a . m
2745but if lonO is negative
2746lon = lonO + rho {atan[– X / (Y – a . mO / sin(latO))]} / a . m
2747In either case, if lat = ±90°, m = 0 and the equation for lon is indeterminate, so use lon = lonO.",See information source.,,"US Geological Survey Professional Paper 1395, ""Map Projections - A Working Manual"" by John P Snyder.",EPSG,2002-07-13,,0
27489828,Bonne (South Orientated),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2749
2750The formulas to convert geodetic latitude and longitude (lat, lon) to Easting and Northing are:
2751
2752W = FE – (rho . sin T)
2753S = FN – (a . mO / sin(latO) –  rho . cos T)
2754
2755where
2756m = cos(lat) / (1 –  e^2sin^2(lat))^0.5
2757with lat in radians and mO for latO, the latitude of the origin, derived in the same way.
2758
2759M = a[(1 –  e^2/4 –  3e^4/64 –  5e^6/256 –....)lat – (3e^2/8 + 3e^4/32 + 45e^6/1024+....)sin(2 lat) + (15e^4/256 + 45e^6/1024 +.....)sin(4 lat) –  (35e^6/3072 + ....)sin(6 lat) + .....]
2760with lat in radians and MO for latO, the latitude of the origin, derived in the same way.
2761
2762rho = a . mO / sin(latO) + MO – M
2763T = a . m (lon – lonO) / rho       with lon and lonO in radians
2764
2765For the reverse calculation:
2766X = FE – W
2767Y = FN – S
2768rho = ± [X^2 + (a . mO / sin(latO) – Y)^2]^0.5  taking the sign of latO
2769M = a . mO / sin(latO) + MO – rho
2770mu = M / [a (1 – e^2/4 – 3e^4/64 – 5e^6/256 – …)]
2771e1 = [1 – (1 – e^2)^0.5] / [1 + (1 – e^2)^0.5]
2772lat = mu + ((3 e1 / 2) –  (27 e1^3 / 32) +.....)sin(2 mu) + ((21 e1^2 / 16) –  (55 e1^4 / 32) + ....)sin(4 mu)
2773  + ((151 e1^3 / 96) +.....)sin(6 mu) + ((1097 e1^4 / 512)  –  ....)sin(8 mu) + ......
2774
2775m = cos(lat) / (1 – e^2 sin^2(lat))^0.5
2776
2777If latO is not negative
2778lon = lonO + rho {atan[X / (a . mO / sin(latO) – Y)]} / a . m
2779but if lonO is negative
2780lon = lonO + rho {atan[– X / (Y – a . mO / sin(latO))]} / a . m
2781In either case, if lat = ±90°, m = 0 and the equation for lon is indeterminate, so use lon = lonO.
2782
2783In these formulas the terms FE and FN retain their definition, i.e. in the Bonne (South Orientated) method they increase the Westing and Southing value at the natural origin. In this method they are effectively false westing (FW) and false southing (FS) respectively.","See information source of Bonne, code 9827, for general methodology.",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2002-07-13,,0
27849829,Polar Stereographic (variant B),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2785
2786First calculate the scale factor at natural origin:
2787for the south pole case
2788tF  = tan (pi/4 + latF/2) / {[(1 + e sin(latF)) / (1 – e sin(latF))]^(e/2)}
2789
2790but for the north pole case
2791tF  = tan (pi/4 - latF/2) * {[(1 + e sin(latF)) / (1 – e sin(latF))]^(e/2)}
2792
2793then for both cases
2794mF = cos(latF)  / (1 – e^2 sin^2(latF))^0.5
2795ko = mF {[(1+e)^(1+e) (1–e)^(1–e)]0.5} / (2  tF)
2796
2797
2798The forward and reverse conversions then follow the formulae for the
2799Polar Stereographic (variant A) method:
2800
2801For the forward conversion from latitude and longitude, for the south pole case
2802
2803E = FE + rho * sin(lon – lonO)
2804N = FN + rho * cos(lon – lonO)
2805where
2806t = tan(pi/4 + lat/2) / {[(1 + e sin(lat)) / (1 – e sin(lat))]^(e/2)}
2807rho = 2*a*ko*t / {[(1+e)^(1+e) (1–e)^(1–e)]^0.5}
2808
2809For the north pole case,
2810rho and E are found as for the south pole case but
2811t  = tan(pi/4 – lat/2) *  {[(1 + e sin(lat)) / (1 – e sin(lat))]^(e/2)}
2812N = FN – rho * cos(lon – lonO)
2813
2814
2815For the reverse conversion from easting and northing to latitude and longitude,
2816lat = chi + (e^2/2 + 5e^4/24 + e^6/12 + 13e^8/360) sin(2 chi)
2817+ (7e^4/48 + 29e^6/240 + 811e^8/11520) sin(4 chi)
2818+ (7e^6/120 +  81e^8/1120) sin(6 chi)  + (4279e^8/161280) sin(8 chi)
2819
2820where rho'  = [(E-FE)^2  + (N – FN)^2]^0.5
2821t'   =rho' {[(1+e)^(1+e) * (1– e)^(1-e)]^0.5} / (2 a ko)
2822and for the south pole case
2823chi  = 2 atan(t' ) – pi/2
2824but for the north pole case
2825chi  =  pi/2 - 2 atan t'
2826
2827Then for for both north and south cases if E = FE, lon = lonO
2828else for the south pole case
2829lon = lonO + atan [(E – FE) / (N – FN)]
2830and for the north pole case
2831lon = lonO + atan [(E – FE) / –(N – FN)] = lonO + atan [(E – FE) / (FN – N)]","For Projected Coordinate Reference System: WGS 84 / Australian Antarctic Polar Stereographic
2832
2833Parameters:
2834Ellipsoid: WGS 84
2835a = 6378137.0 metres  1/f = 298.2572236
2836then e = 0.081819191
2837
2838Latitude of standard parallel (latF): 71°00'00.000""S = -1.239183769 rad
2839Longitude of origin (lonO): 70°00'00.000""E = 1.221730476 rad
2840False easting (FE): 6000000.00 metres
2841False northing (FN): 6000000.00 metres
2842
2843Forward calculation for:
2844Latitude (lat) = 75°00'00.000""S = -1.308996939 rad
2845Longitude(lon) = 120°00'00.000""E = 2.094395102 rad
2846
2847tF  = 0.168407325
2848mF = 0.326546781
2849ko = 0.97276901
2850t  = 0.132508348
2851pho = 1638783.238
2852whence
2853E = 7255380.79 m
2854N = 7053389.56 m
2855
2856Reverse calculation for the same Easting and Northing (7255380.79 E, 7053389.56 N) first gives:
2857tF  = 0.168407325       mF = 0.326546781      and  ko = 0.97276901
2858then rho' = 1638783.236          t'  = 0.132508347               chi = -1.3073146
2859
2860Then Latitude (lat) = 75°00'00.000""S
2861        Longitude (lon) = 120°00'00.000""E",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2004-06-22,2004.43,0
28629830,Polar Stereographic (variant C),1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2863
2864For the forward conversion from latitude and longitude, for the south pole case
2865E = EF + rho * sin (lon – lonO)
2866N = NF – rhoF + rho * cos (lon – lonO)
2867where
2868mF = cos latF  / (1 – e^2 sin^2(latF))^0.5
2869tF  = tan (p/4 + latF/2) / {[(1 + e sin(latF)) / (1 – e sin(latF))]^(e/2)}
2870t  = tan (p/4 + lat/2) / {[(1 + e sin(lat)) / (1 – e sin(lat))]^(e/2)}
2871rhoF = a mF
2872rho = rhoF *  t / tF
2873
2874For the north pole case, mF, *F, * and E are found as for the south pole case but
2875tF = tan (p/4 – latF/2) * {[(1 + e sin(latF)) / (1 – e sin(latF))]^(e/2)}
2876t = tan (p/4 – lat/2) * {[(1 + e sin(lat)) / (1 – e sin(lat))]^(e/2)}
2877N = NF + rhoF – [rho * cos (lon – lonO)]
2878
2879
2880For the reverse conversion from easting and northing to latitude and longitude,
2881lat = chi + (e^2/2 + 5e^4/24 + e^6/12 + 13e^8/360) sin(2 chi)
2882+ (7e^4/48 + 29e^6/240 + 811e^8/11520) sin(4 chi)
2883+ (7e^6/120 +  81e^8/1120) sin(6 chi)  + (4279e^8/161280) sin(8 chi)
2884
2885where for the south pole case
2886rho' = [(E-EF)^2  + (N – NF + rhoF)^2] ^0.5
2887t'   =  rho' *  tF / rhoF
2888chi  = 2 atan(t' ) – pi/2
2889and where mF and tF are as for the forward conversion
2890
2891For reverse conversion north pole case, mF, tF and rhoF are found as for the north pole case of the forward conversion, and
2892rho' = [(E-EF)^2  + (N – NF – rhoF)^2]^0.5
2893t' is found as for the south pole case of the reverse conversion =  rho' *  tF / rhoF
2894chi  =  pi/2 - 2 atan t'
2895
2896Then for for both north and south pole cases
2897if E = EF, lon = lonO
2898else for the south pole case
2899lon = lonO + atan [(E – EF) / (N – NF + rhoF)]
2900and for the north pole case
2901lon = lonO + atan [(E – EF) / –(N – NF – rhoF)] = lonO + atan [(E – EF) / (NF + rhoF – N)]","For Projected Coordinate Reference System: Petrels 1972 / Terre Adelie Polar Stereographic
2902
2903Parameters:
2904Ellipsoid:International 1924
2905a = 6378388.0 metres  1/f = 297.0
2906then e = 0.081991890
2907
2908Latitude of false origin (latF):  67°00'00.000""S = -1.169370599 rad
2909Longitude of origin (lonO): 140°00'00.000""E = 2.443460953 rad
2910Easting at false origin (EF): 300000.00 metres
2911Northing at false origin (NF): 200000.00 metres
2912
2913Forward calculation for:
2914Latitude (lat) = 66°36'18.820""S = -1.162480524 rad
2915Longitude (lon) = 140°04'17.040""E = 2.444707118 rad
2916
2917mF = 0.391848769
2918rhoF = 2499363.488
2919tF  = 0.204717630
2920t  = 0.208326304
2921rho = 2543421.183
2922whence
2923E = 303169.52 m
2924N = 244055.72 m
2925
2926Reverse calculation for the same Easting and Northing (303169.522 E, 244055.721 N) first gives:
2927mF = 0.391848769
2928rhoF = 2499363.488
2929tF  = 0.204717630
2930
2931then
2932rho' = 2543421.183
2933t'  = 0.208326304
2934chi = -1.1600190
2935
2936Then Latitude (lat) = 66°36'18.820""S
2937         Longitude (lon) =140°04'17.040""E",,"EPSG guidance note #7-2, http://www.epsg.org",EPSG,2003-09-22,,0
29389831,Guam Projection,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2939
2940the forward conversion from latitude and longitude is given by:
2941        x = (lon – lonO) cos(lat) / [(1 – e^2 sin^2(lat))^0.5]
2942        E = FE + x
2943        N = FN + M – MO + ^2 tan(lat) [(1 – e^2 sin^2(lat))^0.5] / (2a)}
2944where
2945        M = a[(1 – ^2/4 –  3e^4/64 –  5e^6/256 –....)lat  –  (3e^2/8 + 3e^4/32 + 45e^6/1024+....)sin(2 lat)
2946                + (^4/256 + 45e^6/1024 +.....)sin(4 lat)  –  (35e^6/3072 + ....)sin(6 lat)  + .....]
2947with lat in radians and MO for latO, the latitude of the natural origin, derived in the same way.
2948
2949The reverse conversion from easting and northing to latitude and longitude requires iteration of three equations. The Guam projection uses three iterations, which is satisfactory over the small area of application. First MO for the latitude of the origin latO is derived as for the forward conversion. Then:
2950e'   = [1 – (1 –^2)^0.5] / [1 + (1 – e^2)^0.5]
2951and
2952M'  =  MO + (N – FN) – {(E – FE)^2 tan(latO) [(1 – e^2 sin^2(latO)^0.5] / (2a)}
2953mu'   =  M' / a(1 –  e^2/4 –  3e^4/64 –  5e^6/256 –....)
2954lat'   =  mu' + (3e'/2 –  27e'^3/32)sin(2mu') + (21e'^2/16 –  55e'^4/32)sin(4mu') + (151e'^3/96)sin(6mu')
2955+ (1097e'^4/512)sin(8mu')
2956
2957        M""  = MO + (N – FN) – {(E FE)^2 tan(lat') [(1 – e^2 sin^2(lat'))^0] / (2a)}
2958mu""   =  M"" / a(1 –  e^2/4 –  3e^4/64 –  5e^6/256 –....)
2959lat""  =  mu"" + (3e'/2 –  27e'^3/32)sin(2mu"") + (21e'^2/16 –  55e'^4/32)sin(4mu"") + (151e'^3/96)sin(6mu"")
2960        (1097  e'^4/512)sin(8mu"")
2961
2962        M'''   = MO + (N – FN) – {(E – F)^2 ta(lat"") [(1 – e^2 sin^2(lat"")^0.5] / (2a)}
2963mu'''   =  M''' / a(1 –  e^2/4 –  3e^4/64 –  5e^6/256 –....)
2964lat'''   =  mu''' + (3e'/2 –  27e'^3/32)sin(2mu''') + (21e'^2/16 –  55e'^4/32)sin(4mu''') + (151e'^3/96)sin(6mu''')
2965+ (1097e'^4/512)sin(8mu''')
2966Then
2967lon = lonO + {(E – FE) . [(1 – e^2 sin^2 lat''')^0.5] / (a cos lat''')}",See information source or EPSG Guidance Note 7.,Simplified form of Oblique Azimuthal Equidistant projection method.,"US Geological Survey Professional Paper 1395; ""Map Projections - A Working Manual"";  J. Snyder.",EPSG,2004-04-22,,0
29689832,Modified Azimuthal Equidistant,1,"Note: These formulas have been transcribed from EPSG Guidance Note #7-2. Users are encouraged to use that document rather than the text which follows as reference because limitations in the transcription will be avoided.
2969
2970First calculate a constant for the projection:
2971nu_O = a /(1 – e^2 sin^2(latO))^0.5
2972
2973Then the forward conversion from latitude and longitude is given by:
2974nu = a /(1 – e^2 sin^2(lat))^0.5
2975psi = atan [(1 – e^2) tan(lat) + e^2 * nu_O * sin(latO)  / (nu * cos(lat))]
2976alpha = atan {sin (lon – lonO) / [cos(latO) * tan(psi) – sin(latO) * cos (lon – lonO)]}
2977G  = e sin(latO) / (1 – e^2)^0.5
2978H = e cos(latO) * cos(alpha) / (1 – e^2)^0.5
2979Then
2980if sin(alpha)) = 0,  s = asin (cos(latO) * sin(psi) – sin(latO) * cos(psi)) * SIGN(cos(alpha))
2981else                     s = asin [sin (lon – lonO) * cos(psi) / sin(alpha))
2982
2983and in either case
2984c = nu_O * s {[1 – s^2 * H^2 (1 – H^2) /6] + [(s^3/8)GH(1-2H^2)] + (s^4/120)[H^2(4-7H^2) – 3G^2(1-7H^2)] – [(s^5/48)GH]}
2985
2986Then
2987        E = FE + * sin(alpha)
2988        N = FN + * cos(alpha)
2989
2990For the reverse conversion from easting and northing to latitude and longitude:
2991        c' = [(E FE)^2 + (N – FN)^2]^0.5
2992alpha' = atan [(E – FE) / (N – FN)]
2993        A = e^2 * cos^2(latO) * cos^2(alpha') / (1 – e^2)
2994        B 3e^2 * (1-A) * sin(latO) * cos(latO) * cos(alpha') / (1 – e^2)
2995        D = c'nu_O
2996        J = D – [A (1 + AD^3 / 6] – [B (1 + 3A) D^4 / 24]
2997        K = 1 – (* J^2 / 2) – (B *J^3 / 6)
2998psi' = asin (sin(latO) cos(J) + cos(latO) sin(J) cos(alpha'))
2999
3000Then
3001lat = atan [(1 – e^2 * K sin(latO) / sin(psi')) * tan(psi') / (1 – e^2)]
3002lon = lonO + asin (sin(alpha') * sin(J) / cos(psi'))",See information source or EPSG Guidance Note 7.,Modified form of Oblique Azimuthal Equidistant projection method developed for Polynesian islands. For the distances over which these projections are used (under 800km) this modification introduces no significant error.,"US Geological Survey Professional Paper 1395; ""Map Projections - A Working Manual"";  J. Snyder.",EPSG,2006-03-31,2006.20,0
30039833,Hyperbolic Cassini-Soldner,1,See information source.,See information source.,,"EPSG guidance note #7-2, http://www.epsg.org",OGP,2006-06-28,,0
30049834,Lambert Cylindrical Equal Area (Spherical),1,See information source.,See information source.,This is the spherical form of the projection. Differences of several tens of metres result from comparison with ellipsoidal form.,"USGS Professional Paper 1395, ""Map Projections - A Working Manual"" by John P. Snyder.",OGP,2006-09-22,,0
Note: See TracBrowser for help on using the repository browser.